文章编号: 2096-1472(2022)-01-22-06

DOI:10.19644/j.cnki.issn2096-1472.2022.001.006

基于遗传算法的疲劳裂纹扩展方法优化研究

徐康宾,杨亚莉

(上海工程技术大学机械与汽车工程学院,上海 201620) ⊠1217493564@qq.com; carolyn71@163.com

摘 要:当前,用于预测疲劳裂纹扩展的方法多种多样,但无论哪一种裂纹扩展方法,都是以扩展点的扩展代替 整个裂纹的扩展。因此,对扩展点的优化具有重要意义。考虑到遗传算法对多参数优化具有较好的效果,基于遗传算法 对扩展点的个数和分布进行了优化研究;引进了"位置比"这个概念,以最外侧扩展点的位置比表征扩展点的分布,介 绍了一种裂纹扩展的数值方法,计算数值结果与实验结果的误差,取该误差的倒数作为个体适应度。结果表明,当扩展 点个数和最外侧扩展点位置比分别为11和0.95时,个体适应度最高,数值预测精度最好。

关键词:遗传算法,裂纹扩展,扩展点个数,位置比,优化 中图分类号:TP304 文献标识码:A

Research on Optimization of Fatigue Crack Growth Method based on Genetic Algorithm

XU Kangbin, YANG Yali

(School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China) Marka Science, Shanghai 201620, China) Marka Science, Shanghai 201620, China)

Abstract: At present, there are various methods for predicting the fatigue crack growth, but no matter which kind of crack growth method, expansion of the expansion point replaces the entire crack expansion. Therefore, optimization of the expansion point is of great significance. Considering that genetic algorithm has good effect on multi-parameter optimization, this paper proposes to optimize the number and distribution of expansion points based on genetic algorithm. The concept of position ratio is introduced to represent the distribution of expansion points by the position ratio of the outermost expansion points. A numerical method for crack growth is introduced. The error between numerical results and experimental results is calculated, and the reciprocal of the error is taken as individual fitness. The results show that when the number of expansion points and the position ratio of the outermost expansion points are 11 and 0.95 respectively, the individual fitness is the highest and the numerical prediction accuracy is the best.

Keywords: genetic algorithm; crack growth; number of expansion points; position ratio; optimization

1 引言(Introduction)

工程构件在生产、安装、使用过程中, 难免会受到挤 压、划伤等, 造成表面损伤。在循环荷载作用下, 这些表面 损伤将演变为表面裂纹,最终断裂,从而导致构件失效。因此,研究表面裂纹的扩展机理具有很大的经济价值和现实意义^[1-4]。LIN等^[5]、WU^[6]通过三次样条曲线拟合表面裂纹扩展

形状,而NEWMAN等^[7]、SONG等^[8]和LIU等^[9]则通过椭圆 弧拟合表面裂纹扩展形状,虽然他们使用的裂纹扩展方法不 同,但都是通过对扩展点的拟合得到扩展结果的。因此,对 扩展点的优化具有重要意义。

遗传算法作为一种最优算法,在很多领域得到应用^[10-12]。 随着遗传算法的不断完善,其应用的领域也越来越广[13-16]。考 虑到遗传算法对多参数优化具有较好的优化效果,本文基于 遗传算法对裂纹扩展过程中的扩展点个数与分布进行了优化 研究。

2 裂纹扩展方法(Crack growth method)

2.1 位置比的确定

图1是位置比的示意图,其定义如式(1)所示,其中L,代表 裂纹上的任何点p到裂纹最深点的距离,L。代表表面点到裂纹 最深点的距离。对于一个给定的裂缝,因为最深的点和表面点 是固定的, L, 也是固定的。点p的位置发生变化, L, 也发生变 化,从而使R发生变化。换句话说,每一个点P的位置对应一个 R,反过来,给出一个R也就能确定点p的位置。

2.2 裂纹扩展步骤

当裂纹从第*i*条裂纹扩展到第*i*+1条裂纹时,其裂纹扩展 示意图如图2所示。

图2裂纹扩展示意图

Fig.2 Schematic diagram of crack growth

其具体步骤如下:

(1)在第*i*条裂纹上取N个扩展点 P(i,i),其坐标为 $(x_{(i,i)}, y_{(i,i)}), j$ 代表第j个扩展点,其取值为1到N。

(2)计算第 j 个扩展点的扩展步长 Δl 。其中 Δk_(i,j)是第 i 条 裂纹上的第 j 个扩展点的应力强度因子幅, Δk_{in}是第 i 条裂纹 上的第1个扩展点的应力强度因子幅。 b。是第1个扩展点的扩 展量。

$$\Delta l = b_0 \, \frac{\Delta k_{(i,j)}^{m}}{\Delta k_{(i,1)}^{m}} \tag{2}$$

(3)根据扩展点垂直于当前裂纹,求出扩展后的第 / 个扩 展点 p_i ,其坐标为 (x_i, y_i) 。

(4)根据每个扩展点扩展后的坐标, 拟合出第*i*+1条 裂纹。

(5)将第 i 条裂纹上的扩展点垂线与第 i+1 条裂纹 的交点作为第i+1条裂纹的扩展点 $p_{(i+1,i)}$, 其坐标为 $(x_{(i+1,i)}, y_{i})$ i+1,i)

裂纹是已知的,从而可以得出第2条裂纹,依 导出整个扩展过程的所有裂纹。

数值结果处理(Numerical result processing)

考虑到优化时需要一个优化标准,因此提出一种可以量 比数值结果与实验结果误差的方法。其原理是用一条曲线拟 合实验结果,然后以拟合曲线与数值曲线的接近程度作为优 化标准。实验结果来源于TORIBIO等人^[17]。

3.1 实验结果的处理

图3是用Origin软件拟合实验数据后的结果图。图3中的 拟合结果如表1所示。则实验数据拟合曲线的方程为:

> $y = -3.83486 x^{3} + 4.3831 x^{2} - 0.76121 x + 0.32498$ (3)

表1 实验数据拟合结果

Tab.1 Fitting results of experimental data

属性	值
方程	$y = Intercept + B_1 x^1 + B_2 x^2 + B_3 x^3$
绘图	相对裂纹弦长
权重	不加权
截距	0.32498 ± 0.03437
B1	-0.76121 ± 0.51236
B2	4.3831 ± 2.24191
В3	-3.83486 ± 2.99127
残差平方和	0.0058
R平方(COD)	0.95593
调整后R平方	0.95167

3.2 数值结果与实验结果的误差计算

经过将实验数据拟合后,实验结果可以用一条曲线代替,而数值结果也能用一条曲线表示,因此,可以将数值结 果与实验结果的误差用两条曲线的误差代替。其示意图如图4 所示,具体步骤如下:

(1)将数值结果中的n个数据点连接起来。

(2)在实验拟合曲线中取出*n*个数据点,保证两条曲线中的*n*个数据点的相对裂纹深度相同。

(3)计算两条曲线中n个数据点的相对裂纹弦长差、 (4)计算两条曲线的误差。

Fig.4 Schematic diagram of curve error

4 基于遗传算法的研究方法(Research method based on genetic algorithm)

遗传算法的优化目标包括扩展点个数和扩展点分布,其

中扩展点分布是通过最外侧扩展点的位置比实现的。遗传算 法所选取的种群个数为8,实现步骤可以分为六步,即编码、 解码、求解适应度、复制、交叉、变异。

(1)编码

根据经验,扩展点个数一般小于20,扩展点个数范围 选为3—18,共16种选择,而扩展点位置比为0.11、0.23、 0.35、0.47、0.59、0.71、0.83和0.95,共八种选择。

因此,染色体位数选择为七位,前四位代表扩展点个数,后三位代表位置比,相对应的关系如表2和表3所示。可以将相关参数转换成染色体编号。

表2 扩展点个数编码

Tab.2 Expansion point number coding

染色体编号	个数
0000	3
0001	4
0010	5
0011	6
0100	7
0101	8
0110	9
0111	10
1000	11
1001	12
1010	13
1011	14
1100	15
1101	16
1110	17
1111	18

表3 位置比编码

Tab.3 Position ratio coding

染色体编号	位置比
000	0.11
001	0.23
010	0.35
011	0.47
100	0.59
101	0.71
110	0.83
111	0.95

(2)解码

解码规则与编码规则是相对应的,可以根据染色体编号 通过查询表2和表3获得对应的相关参数。

(3)求解适应度

每个个体中的染色体都能通过解码找到其对应的扩展点 个数和位置比,通过这两个参数就能得到相应的数值结果, 再将数值结果进行处理,就得到了数值结果与实验结果的误 差,最后取误差的倒数作为该个体的适应度。

(4)复制

将种群中适应度最低的个体用适应度最高的个体替代, 就是更新后的种群。

(5)交叉

种群中个体与个体间有一定概率发生部分染色体交换的 情况,用MATLAB实现的代码如图5所示。

> ∃ for j=1:8 if rand<0.3 h=ceil(rand*8); m=ceil(rand*8);n=ceil(rand*8); if n<m tep=m: m=n: n=tep: end for i=m:n tem=a(h, i); a(h, i)=a(j, i); a(j, i)=tem: end end end 图5 交叉算法MATLAB代码

Fig.5 Crossover algorithm MATLAB code

(6) 变异

除了个体与个体之间的交换会改变染色体外,每个个体 自身的变异也会改变染色体的编号,用MATLAB实现的代码 如图6所示。

5 种群进化(Population evolution)

首先,种群的第一代个体所对应的染色体编号由电脑随 机生成,其相关信息如表4所示。个体3适应度最小,个体4适 应度最大。

表4 第一代种群相关信息

Tab.4 Related information on the first generation population

人社的马	个体	个体属性		
个体细亏	染色体编号	适应度		
个体1	1100 110	6.639581		
个体2	1010 110	6.599925		
个体3	0011 000	5.84675		
个体4	0110 101	6.796351		
个体5	0010 001	6.783596		
个体6	0101 101	6.671422		
个体7	1101 110	6.721514		
个体8	1011 111	6.347542		

将第一代种样进行复制、交叉与变异后得到第二代种

群,其相关信息如表5所示。个体3适应度最小,个体8适应度

表5 第二代种群相关信息

5 Related information on the second generation population

人出於日		个体属性		
个体编号	染色体编号	适应度		
	个体1	0010 001	6.783596	
	个体2	1010 110	6.599925	
	个体3	0110 001	6.33069	
	个体4	0110 100	6.636515	
	个体5	1101 110	6.721514	
	个体6	0101 101	6.671422	
	个体7	1111 110	6.638833	
	个体8	1001 111	6.857799	

将第二代种群进行复制、交叉与变异后得到第三代种群,

其相关信息如表6所示。个体8适应度最小,个体4适应度最大。

表6 第三代种群相关信息

Tab.6 Related information on the third generation population

for i=1:8	Tab.6 Related infor	mation on the third g	generation population
for i=1:7		个体属性	
if rand<0.05 a(i, i)=abs(a(i, i)-1):	个 体细亏	染色体编号	适应度
end	个体1	1101 110	6.721514
- end - end	个体2	1010 110	6.599925
	个体3	1001 011	6.480208
图6 变并算法MATLAB代码 Fig.6 Mutation algorithm MATLAB code	个体4	0110 101	6.796351
1 18.0 Matation algorithmi milling code			

		(34
	个体质	禹性
个体细亏	染色体编号	适应度
个体5	0011 001	6.349411
个体6	0101 101	6.671422
个体7	1101 110	6.721514
个体8	1011 111	6.347542

将第三代种群进行复制、交叉与变异后得到第四代种

群,其相关信息如表7所示。个体1适应度最小,个体3适应度 最大。

表7 第四代种群相关信息

Tab.7 Relevant information on the fourth generation population

人生经日	个体	属性
个体编号	染色体编号	适应度
个体1	0011 001	6.349411
个体2	1010 110	6.599925
个体3	1001 111	6.857799
个体4	0110 100	6.636515
个体5	1100 110	6.639581
个体6	0101 101	6.671422
个体7	1110 110	6.840298
个体8	0101 101	6.671422

将第四代种群进行复制、交叉与变异后得到第五代种。

群,其相关信息如表8所示。个体3适应度最小,个体5适应度 最大。

表8 第五代种群相关信

Tab.8 Related information on the fifth generation population

人社会日	个体属性	
个体编号	染色体编号	适应度
个体1	1100 110	6.639581
个体2	1010 110	6.599925
个体3	1001 011	6.480208
个体4	0110 101	6.796351
个体5	1000 111	7.015686
个体6	0101 101	6.671422
个体7	1101 110	6.721514
个体8	0110 101	6.796351

将第五代种群进行复制、交叉与变异后得到第六代种 群,其相关信息如表9所示。个体2适应度最小,个体1适应度 最大。

圭α	笛…	化和世相	えん とう しょうしん ジェンジョン ション ション ション ション ション ション ション ション ション シ
衣9	- わい	飞州杆相	大旧尼

Tab.9 Related information on the sixth generation population

人任始日	个体属性		
个体细专	染色体编号	适应度	
个体1	1000 111	7.015686	
个体2	1010 110	6.599925	
个体3	1000 011	6.627174	
个体4	0110 100	6.636515	
个体5	1101 110	6.721514	
个体6	0101 101	6.671422	
个体7	1110 110	6.840298	
个体8	0101 101	6.671422	

将第六代种群进行复制、交叉与变异后得到第七代种

群,其相关信息如表10所示,个体6适应度最小,个体2和个体3适应度最大。

表10 第七代种群相关信息

b.10 Related information on the seventh generation population

从在拍马	个体属性	
1 平细 5	染色体编号	适应度
个体1	1101 110	6.721514
个体2	1000 111	7.015686
个体3	1000 111	7.015686
个体4	0110 101	6.796351
个体5	1001 111	6.857799
个体6	0101 101	6.671422
个体7	1101 110	6.721514
个体8	0110 101	6.796351

将第七代种群进行复制、交叉与变异后得到第八代种 群,其相关信息如表11所示。个体3适应度最小,个体2和个 体6适应度最大。

表11 第八代种群相关信息

Tab.11 Relevant information on the eighth generation population

个体编号	个体属性	
	染色体编号	适应度
个体1	1001 111	6.857799
个体2	1000 111	7.015686
个体3	1000 011	6.627174
个体4	0110 100	6.636515

(续表)

		(续表)
个体编号	个体属性	
	染色体编号	适应度
个体5	1100 110	6.639581
个体6	1000 111	7.015686
个体7	1110 110	6.840298
个体8	0101 101	6.671422

6 结果与讨论(Results and discussion)

将每代种群中最高的个体适应度作为该代种群中最佳适 应度,从而可以得到种群中最佳适应度与种群迭代次数的关 系,如图7所示。从图7中可以看出,当种群从第五代开始, 种群中最佳适应度就一直维持在同一个水平。说明此时的种 群已经进化到最佳状态,则种群中最佳适应度对应的个体就 是最佳个体,其对应的染色体编号为1000111,经过解码后, 得知其对应的扩展点个数和位置比分别为11和0.95。

对于扩展点,当扩展点较少时,用于预测下一条裂纹的 拟合数据较少,导致误差偏大;而当扩展点较多时,由于在 模型计算中划分网格精度不高,计算出的应力强度因子幅误 差偏大,从而使得单个扩展点精度不足,进而误差也偏大。 对于位置比,位置比越大,最外侧扩展点越接近圆柱体表 面,扩展点在整个裂纹前沿的分布范围也越广,也就越有利 于减小误差。

7 结论(Conclusion)

本文通过遗传算法对疲劳裂纹扩展过程中扩展点的个数 和分布进行了优化研究。具体结论如下:

(1)引进了位置比的概念,通过改变位置比实现对扩展点

分布的改变。介绍了疲劳裂纹扩展方法,通过该方法可以实 现在不同扩展点个数和分布下的数值扩展。

(2)提出了一种数值结果与仿真结果的误差计算方法,实现了在不同扩展点个数和分布下对应的数值精度计算。基于 遗传算法,将不同的扩展点个数和分布进行编码和解码,并 将对应的数值精度的倒数作为个体适应度。

(3)从第五代开始,种群中的最佳适应度就不再改变,说 明的种群已经进化到最佳状态。此时,种群中最佳适应度对 应的个体就是最佳个体,其对应的染色体编号为1000111, 经过解码后,得知其对应的扩展点个数和位置比分别为11和 0.95。

参考文献(Refereces)

- MACKAY T L, ALPERIN B J. Stress intensity factors for fatigue cracking in high-strength bolts[J]. Engineering Fracture Mechanics, 1985, 21(2):391–397.
- [2] LORENTZEN T. KJAER N E, HENRIKSEN T K. The application of fracture mechanics to surface cracks in shafts[J]. Engineering Fracture Mechanics, 1986, 23(6):1005–1014.
- [3] CARPINTERI A. Elliptical–Arc surface cracks in round bars[J]. Fatigue & Fracture of Engineering Materials & Structures, 1992, 15(11):1141–1153.
- [4] YANG F P, KUANG Z B, SHLYANNIKOV V N. Fatigue crack growth for straight-fronted edge crack in a round bar[J]. International Journal of Fatigue, 2006, 28(4):431–437.
- [5] LIN X B, SMITH R A. Fatigue shape analysis for corner cracks at fastener holes[J]. Engineering Fracture Mechanics, 1998, 59(1):73-87.
- [6] WU Z. The shape of a surface crack in a plate based on a given stress intensity factor distribution[J]. International Journal of Pressure Vessels and Piping, 2006, 83(3):168–180.
- [7] NEWMAN J C, RAJU I S. An empirical stress-intensity factor equation for the surface crack[J]. Engineering Fracture Mechanics, 1981, 15(1/2):185–192.
- [8] SONG P S, SHEU B C, SHIEH Y L. Prediction of semi– elliptical surface crack growth in 2024–T4 aluminium alloy[J]. International Journal of Pressure Vessels and Piping, 2002, 79(4):273–278.
- [9] LIU Y P, CHEN C Y, LI G Q, et al. Fatigue life prediction of semi-elliptical surface crack in 14MnNbq bridge steel[J]. Engineering Failure Analysis, 2010, 17(6):1413–1423.

- [10] 陈炎冬,杨敏,许轰烈,等.采用遗传算法参数整定的车辆ABS 分数阶PID控制[]].制造业自动化,2018,40(1):24-27.
- [11] 李振业,陈婷,陈静.基于遗传算法的旅游最优路径探究[].电脑知识与技术,2018,14(34):187-189,194.
- [12] 刘志宏,喻晓旭.基于遗传算法的两阶段切割问题的研究[J].电子技术与软件工程,2018,146(24):171-172.
- [13] 哈圣,白楚枫,杜建红,等.基于遗传优化混合模型发动机稳 态数据融合[J/OL].测控技术.[2021-10-08].https://doi. org/10.19708/j.ckjs.2021.08.262.
- [14] 岳荣华.对遗传算法下高温作业服装传热的探讨[J].轻纺工 业与技术,2021,50(09):78-79.
- [15] 屈新怀,王娇,丁必荣,等.贪婪初始种群的遗传算法求解柔性

(上接第49页)

分率。该模型对弱特征类别、小样本分类非常有利,能较好 地解决水质分类中局部高污染点这种小样本类的错分问题。

通过比较多组实验数据,分析了不同参数对核函数分类 性能、收敛速度和泛化能力的影响,为合理寻找最优核函数 提供依据,并阐述多宽度高斯核的收敛速度略落后于标准高 斯核,但是其分类性能、泛化能力要优于标准高斯核。

经实验研究证实,该综合模型对水质评估是高效可行的,为合理选择水源,充分利用和管理水资源提供了重要依据。

参考文献(References)

- [1] 郭彦英,邓云峰.AHP法在地表水水质综合产值指标权重确定 中的应用[J].兰州交通大学学报(自然和学版),2006(6):70-72.
- [2] 陈海洋,滕彦国,王金生.改进的决策树支持向量机地下水水 质评估[[].计算机应用,2011(3):848-850.
- [3] 马创,王尧,李林峰.基于遗传算法与支持向量机的水质预测 模型[J].重庆大学学报,2021,44(07):108-114.
- [4] 方国华,王雪,方应学,等.基于改进粒子群算法的区域水量水质联合配置研究[J].水资源保护,2021(10):1-15.
- [5] 石晴宜,董增川,罗赟,等.基于机器学习方法的洪泽湖入湖水 质评估及预测研究[J].中国农村水利水电,2021(10):1-14.
- [6] XIA J J, ZENG J. Environmental factor assisted chlorophyll—a prediction and water quality eutrophication grade classification: A comparative analysis of multiple hybrid models based on a SVM[J]. Environmental Science: Water Research and Technology, 2021,7(6):1040–1049.

作业车间调度[J].合肥工业大学学报(自然科学版),2021,44 (09):1153-1156,1171.

- [16] 郑俊衰,华思洁.基于GA-BPNN的PM2.5浓度预测模型[J]. 软件导刊,2021,20(09):28-32.
- [17] TORIBIO J, MATOS C J. Numerical modelling of crack shape evolution for surface flaws in round bars under tensile loading[J]. Engineering Failure Analysis, 2009, 16:618–630.

作者简介:

- 徐康宾(1995-),男,硕士生.研究领域:汽车零部件疲劳损伤 及轻量化.
- 杨亚莉(1982-), 女, 博士, 副教授.研究领域: 汽车零部件疲劳损伤及金属断裂机理.
- [7] 田径,赵犁丰,赵宇倩一种基于WGKMW的网络结构核函数 框架[J].中国海洋大学学报,2009(9):471-474.
- [8] 常群,王晓龙,林沂蒙,等.支持向量分类和多宽度高斯核[]].电子学报,2007(3):484-487.
- [9] 汪延华,赵东岩,张琼.多类核极化及其在多宽度RBF核参数 选择中的应用[J].北京大学学报(自然科学版),2012,48(05): 727-731.
- [10] 罗浪.基于多宽度高斯核的支持向量机参数优化与特征选择算法研究[D].武汉:中南民族大学,2018.
- [11] 邓伟萍.基于智能算法的洪灾综合评估模型研究[D].武汉: 华中科技大学,2013.
- [12] 中国环境监测总站.水质自动监测周报[EB/OL]. (2017-01-09)
 [2017-11-03]. http://www.cnemc.cn/sssj/szzdjczb/201712/ t20171211_660224.shtml.

作者简介:

- 邓伟萍(1979-), 女, 博士, 副教授.研究领域: 机器学习, 智能评估与预测.
- 桂 超(1966-),男,硕士,教授.研究领域:智能计算,网络编码.
- 注 波(1977-),男,硕士,副教授.研究领域:计算机系统结构.
- 石 黎(1980-),女,博士,副教授.研究领域:机器学习, 决策与决策支持.
- 关培超(1977-),男,博士,讲师.研究领域:软件工程,空间信息共享与集成.