• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:贾梓健,宋腾炜,王建新.基于傅里叶变换和kNNI的周期性时序数据缺失值补全算法[J].软件工程,2017,20(3):9-13.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于傅里叶变换和kNNI的周期性时序数据缺失值补全算法
贾梓健,宋腾炜,王建新
(北京林业大学信息学院,北京 100083)
摘 要: 在机器学习和数据挖掘过程中,数据缺失现象经常发生。对缺失值的有效补全是数据预处理的重要组成部 分,也是后续分析挖掘工作的基础。最近邻填充算法(kNNI)因其易于实现、计算方便和局部填充效果好等特性而被广 泛应用。但是,它并不涉及全局信息,因而当大段缺失值发生时,补全效果会有所降低,而对于具有周期成分的时序 数据,其效果更是急剧下降。幸运的是,傅里叶变换能够解析出周期数据中的不同周期成分,并能在此基础上通过逆变 换基本实现数据复原,只不过其局部复原能力较弱。因此,本文结合傅里叶变换对周期性数据的全局复原能力和kNNI 对局部数据的补全能力,提出了基于傅里叶变换的kNNI缺失值补全算法(FkNNI)。通过对大量模拟数据的测试结果表 明,该算法比单纯的kNNI算法的缺失值补全准确性有很大提升。
关键词: 缺失值补全;最近邻填充算法;周期数据;傅里叶变换
中图分类号: TP391.4    文献标识码: A
基金项目: 学生创新计划(S201610022096).
A Missing Value Imputation Algorithm for Periodic Time Series Data Based on kNNI and Fourier Transform
JIA Zijian,SONG Tengwei,WANG Jianxin
( School of Information, Beijing Forestry University, Beijing 100083, China)
Abstract: Data missing often occurs during the process of machine learning and data mining.Missing value imputation is an important part of data preprocessing and is also a basis for subsequent work of analysis and mining.The algorithm of k-Nearest Neighbor Imputation (kNNI) is a popular method frequently employed for missing value imputation because it is easy to implement,easy to calculate and effective for local data completion. However,it does not involve global information, and as a result,its effect decreases somewhat when large fragments of missing values occur,especially when there are periodic components in the time series data.Fourier transform, however,is able to analyze the different periodic components in the periodic data,and to roughly restore the data by inverse transform, with its local recovery ability weak only.Therefore,this paper proposes akNNI algorithm based on Fourier transform (FkNNI),combining the global recovery ability of Fourier transform and the local recovery ability of kNNI.Experimental testing results on a large amount of data indicate that the new algorithm is far more accurate than kNNI only.
Keywords: missing value imputation;kNNI;cyclical data;Fourier transform


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫