摘 要: 随着机动车辆的迅速发展和普及,为人们出行带来了安全隐患,尤其国内基础交通设施还不够完善,行人 和机动车混行情况严重,存在人身不安全问题。本文提出人车协同系统的概念并能够为上述问题提供一种解决方法,该 系统能够依靠距离传感器获取目标信息,通过移动设备中的GPS获取车辆和行人的地理位置,并使用移动网络上传至服 务器形成大数据共享。服务器将处理后的数据共享给每一个用户,最后能够在移动终端上显示出人与车的位置和相对位 置,并对目标的移动轨迹进行预测,当人车距离过近时,通过车上安装超声波传感器,获取人车精准距离,通过设定安 全距离,进而对用户进行语音报警提醒。本文给出了人车协同系统框架,对其国内外研究现状进行了研究与分析,并且 对其中的关键问题进行了深入分析。 |
关键词: 智能交通;GPS;超声波传感器;人车协同;智能预测 |
中图分类号: TP39
文献标识码: A
|
基金项目: 大学生创新创业“基于移动互联网的人车协同感知系统”资助项目;国家自然科学基金(编号61540069)资助项目. |
|
Research of the Human-Vehicle Cooperative Sensing System |
ZHANG Yunfei,LI Yahong,LI Jiaxing,WANG Tingting
|
( Software School of Shenyang University of Technology, Shenyang 110023, China)
|
Abstract: With the rapid development and popularization of motor vehicles,travel security risks are increased,especially as the domestic traffic infrastructure is still inadequate,and serious problems are often caused by the mixed traffic of pedestrians and vehicles on the road.This paper defines the human-vehicle cooperative sensing system and provides a solution to the above problem.The system acquires target information through the distance sensor,obtains the geographic location of pedestrians and vehicles through GPS in mobile devices,and implements big data sharing by uploading information to the server through mobile internet.After the server processes and shares data with each individual user,the absolute positions and relative positions of the pedestrian and the vehicle will be displayed on the mobile terminal and the moving path of the target will be predicted.When the pedestrian is too close to the vehicle,the precise distance between the pedestrian and the vehicle will be acquired through the ultrasonic sensor installed on the vehicle,and the user will be warned through the voice alarm if the distance is smaller than the pre-set safe distance.This paper proposes the framework of the human-vehicle cooperative sensing system,researches the relative studies both at home and abroad,and analyzes the key issues in detail. |
Keywords: intelligent transportation;GPS;ultrasonic sensors;human-vehicle cooperation;intelligent prediction |