摘 要: 广西旅游资源丰富,对出行线路的规划可以能让旅游线路更为优化合理。本文以广西30个城市的旅游线 路优化问题构造TSP问题,分析了遗传算法和模拟退火算法的优缺点。利用两种算法的互补性,构造了混合遗传模拟退 火算法,指出三种算法对旅游线路的求解算法过程。通过对实验数据的对比分析,得出了混合遗传模拟退火算法在求解 精度上优于遗传算法或模拟退火算法。 |
关键词: 混合遗传模拟退火算法;旅游线路优化;TSP问题 |
中图分类号: TP399
文献标识码: A
|
基金项目: 2015年度广西高校科学技术研究项目“主题图在网络信息资源组织中的应用研究”,编号:KY2015LX478.2017年广西高等教育本科教学改革工程项目“以工程教育 专业认证为理念的软件工程专业校企合作人才培养模式的研究与实践”,编号:2017JGB401. |
|
Tourist Route Optimization Based on the Hybrid Genetic Simulated Annealing Algorithm |
HUANG Huasheng,ZHANG Bo
|
( School of Mathematics and Computer Science, Huzhou University, Hezhou 542899, China)
|
Abstract: Due to the abundant tourism resources in Guangxi,reasonable route planning can effectively optimize the travel schedule.The paper constructs TSP problems of tourist route optimization for 30 cities in Guangxi province.The paper analyzes the advantages and disadvantages of the genetic algorithm and the simulated annealing algorithm.Making use of the complementarity of the two algorithms,the paper constructs a hybrid genetic simulated annealing algorithm,and proposes the solution procedures of tourist route optimization with the three algorithms.Through the comparative analysis of experimental data,it is concluded that the hybrid genetic simulated annealing algorithm is superior to the genetic algorithm and the simulated annealing algorithm in solution accuracy |
Keywords: the hybrid genetic simulated annealing algorithm;tourist route optimization;TSP problems |