摘 要: 为提高叠前逆时偏移计算效率,本文采用MPI+CUDA混合粒度相结合的并行模式,对地震数据进行数据 分割,合理划分并行任务。总结出MPI+CUDA并行编程模型,提出叠前逆时偏移的混合粒度并行算法。根据CUDA特 有的存储方式,对叠前逆时偏移算法提出存储优化方案,更高效的利用GPU上各类存储器,以进一步降低数据访问所 造成的时间延迟。 |
关键词: 图形处理器;叠前逆时偏移;混合粒度;并行计算;存储优化 |
中图分类号: TP391
文献标识码: A
|
|
The Hybrid Granularity Data Segmentation and Storage Optimization of Prestack Reverse-Time Migration Based on GPU |
HAN Fei,LI Wei1,2
|
1.( 1.Lenovo Beijing Co.LTD., Beijing 100094, China;2. 2.Lenovo Beijing Information Technology Co.LTD., Beijing 100094, China)
|
Abstract: To improve the computational efficiency of prestack reverse-time migration,this paper adopts the MPI + CUDA parallel model to divide seismic data and parallel tasks.The MPI + CUDA parallel programming model is summarized and the hybrid granularity parallel algorithm of prestack reverse-time migration is proposed.Based on the special storage model of CUDA,we propose the storage optimization scheme for prestack reverse-time migration algorithm so as to reduce time delay caused by the data access with higher involvements of all kinds of memories on GPU. |
Keywords: GPU;prestack RTM;hybrid granularity;parallel computing;storage optimization |