| 摘 要: 本文针对实时数据处理系统人工测试验证模式中存在的效率低下、工作强度高、测试验证不充分等问题,提出了基于偏差模型的测量数据模拟方法,设计了基于经典误差分析方法的测试验证评估模型,构建了实时数据处理系统自主闭环测试验证体系,实现了实时数据处理系统测试验证的自动化。以航天测控实际应用场景开展实验,发现本文所提出的自主闭环测试验证体系能够有效降低人员的工作量,提高实时数据处理系统的测试验证效率。 | 
	         
			
	         
				| 关键词: 数据处理系统  自主闭环测试验证  偏差模型  验证评估 | 
	         
		
			 
                     
			
                | 
				中图分类号: TP391
			 
		
                  文献标识码: A
			   
			    | 
             
		
	   
           | 
           
                | Research on Autonomous Closed Loop Test and Validation Technology of Real-time Data Processing System | 
           
           
			
                | 
				 LIU Yongli, LIU Yunpeng
                                 			
				
				 | 
           
           
		   
                
				
				 (Jiuquan Satellite Launch Center, Jiuquan 735000, China )
                                  
                                  
                                 python201501@sina.com; 13484466701@163.com
                                
				 | 
           
             
                | Abstract: Manual test and verification mode of real-time data processing system has problems of low efficiency, high work intensity, and insufficient verification. This paper proposes a measurement data simulation method based on deviation model and designs a test and verification evaluation model based on a classic error analysis method. The paper also proposes to construct an autonomous closed-loop test and verification framework for real-time data processing system, so to realize autonomous test and verification of real-time data processing system. Experiments carried out in the actual application scenarios of aerospace measurement and control show that the autonomous closed-loop test and verification system proposed here can effectively reduce workload of the working staff and improve efficiency of testing and verification for real-time data processing system. | 
            
	       
                | Keywords: data processing system  autonomous closed-loop test and verification  deviation model  verification and evaluation |