• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:姚华莹,彭亚雄.基于轻量型卷积神经网络的菜品图像识别[J].软件工程,2021,24(10):23-27.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于轻量型卷积神经网络的菜品图像识别
姚华莹,彭亚雄
(贵州大学大数据与信息工程学院,贵州 贵阳 550025)
huayingyao97@163.com; 515154900@qq.com
摘 要: 使用卷积神经网络分析研究识别菜品,能够帮助人们了解食物,根据不同的需求选择适合的菜品;同时也能被使用在自助餐厅结算系统中,提高结算效率。由于卷积神经网络有大量的卷积计算,大量参数致使卷积模型体积庞大,不利于将模型嵌入移动设备中,因此设计了一种轻量型卷积神经网络MobileNetV2-pro分类菜品。通过引入通道混洗、注意力机制提高网络的检测能力;利用随机擦除等图像预处理技术对菜品图像进行处理,提高系统的泛化能力。实验结果表明,该新结构网络能显著提高菜品分类准确率。
关键词: 卷积神经网络;轻量化;菜品分类;注意力机制
中图分类号: TP391.41    文献标识码: A
基金项目: 贵州省科技成果转化项目([2017]4856).
Dishes Image Recognition based on Lightweight Convolutional Neural Network
YAO Huaying, PENG Yaxiong
(College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)
huayingyao97@163.com; 515154900@qq.com
Abstract: Convolutional neural network can be used to analyze and recognize dishes, helping people know about food and choose suitable dishes according to different needs. At the same time, it can also be used in cafeteria settlement system to improve settlement efficiency. A large number of convolution calculations and parameters in the convolutional neural network make the convolution model bulky, which is not conducive to embedding the model in a mobile device. This paper proposes to design a lightweight convolutional neural network MobileNetV2-pro to classify dishes. Channel shuffling and attention mechanism are introduced to improve the detection ability of the network. Image preprocessing techniques such as random erasure are used to process the image of dishes to improve the generalization ability of the system. Experimental results show that the new structure network can significantly improve the accuracy of dish classification.
Keywords: convolutional neural network; lightweight; dishes classification; attention mechanism


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫