• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:叶怡豪,仲梁维.汽油辛烷值损失模型建立与分析[J].软件工程,2021,24(12):53-58.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
汽油辛烷值损失模型建立与分析
叶怡豪,仲梁维
(上海理工大学,上海 200093)
yeyihao999@163.com; zlvcad@126.com
摘 要: 针对汽油催化裂化过程中减少辛烷值损失值的问题,基于某企业催化裂化汽油精制脱硫设备的样本数据库数据,通过数据挖掘技术建立汽油精制过程中的辛烷值(RON)模型。首先,对初始数据进行规范化,然后运用随机森林法对数据变量进行降维,提取出因变量贡献程度较大的30 个主要变量;其次,利用BP神经网络,建立辛烷值损失模型;最后,在建立的模型中确定初始样本,结合遗传算法对操作变量进行优化。结果表明:优化后的辛烷值损失值下降的幅度为42.14%,降幅大于30%,有助于在实际生产中减少辛烷值损失,降低企业经济损失。
关键词: 随机森林法;汽油辛烷值;BP神经网络模型;遗传算法
中图分类号: TP183    文献标识码: A
Establishment and Analysis of Gasoline Research Octane Number Loss Model
YE Yihao, ZHONG Liangwei
(University of Shanghai for Science and Technology, Shanghai 200093, China)
yeyihao999@163.com; zlvcad@126.com
Abstract: Aiming at the problem of reducing octane number loss in the process of gasoline catalytic cracking, this paper proposes to establish a research octane number (RON) model in the gasoline refining process through data mining technology, based on the sample database data of a company's catalytic cracking gasoline refinement and desulfurization equipment. Firstly, initial data is normalized. Then, random forest method is used to reduce the dimensionality of the data variables, and the 30 main variables that contribute to the dependent variable are extracted. Secondly, BP neural network is used to establish the RON loss model. Finally, the initial sample is determined in the model, and the operating variables are optimized in combination with genetic algorithm. Results show that the optimized RON loss value decreases by 42.14%, which is more than 30%. The proposed model helps to reduce the octane loss in actual production, so to reduce the economic losses of enterprises.
Keywords: random forest method; gasoline octane number; BP neural network model; genetic algorithm


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫