• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:李元贞,赵俊松.基于深度学习的图像显著性目标检测研究综述[J].软件工程,2023,26(1):1-4.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的图像显著性目标检测研究综述
李元贞1,赵俊松2
(1.河北工业大学人工智能与数据科学学院,天津 300401;
2.中国民航大学信息网络中心,天津 300300)
2081059521@qq.com; xmbdhyq@163.com
摘 要: 随着近年来深度学习技术的发展,图像显著性目标检测的研究重点偏向于利用深度学习方法解决问题。为了全面且深入地探究图像显著性目标检测领域,基于深度学习框架,回顾近五年出现的20余种深度学习方法,归纳出四类深度学习策略,并且对比了它们在4 个显著性数据集上的评价结果。结果显示,各类策略在不同数据集上的F度量值为0.800—0.950,综合利用多种策略的方法可以取得更优的预测指标,但仍然存在复杂场景干扰下检测有误的问题。针对现有问题,提出加强深度学习方法在复杂数据集上的训练,进而优化显著目标预测结果的定位准确性及边缘完整性。
关键词: 图像显著性目标检测;深度学习框架;深度学习策略
中图分类号: TP391    文献标识码: A
Overview of Image Salient Object Detection Research based on Deep Learning
LI Yuanzhen1, ZHAO Junsong2
( 1.School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China ;
2.Information Network Center, Civil Aviation University of China, Tianjin 300300, China)
2081059521@qq.com; xmbdhyq@163.com
Abstract: With the development of deep learning in recent years, research focus of image salient object detection tends to use deep learning methods to solve problems. In order to comprehensively and deeply explore the field of image salient object detection, this paper proposes to review more than 20 deep learning methods over the past five years based on deep learning framework, summarize four types of deep learning strategies, and compare their evaluation results on four datasets of salient object detection. The results show that F-measure of various strategies on different datasets are from 0.800 to 0.950. The comprehensive use of multiple strategies can achieve better prediction indicators, but there are still the problems of incorrect detection under the interference of complex scenes. In view of the existing problems, it is proposed to strengthen the training of deep learning methods on complex datasets, so as to optimize the positioning accuracy and edge integrity of salient object.
Keywords: image salient object detection; deep learning framework; deep learning strategies


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫