• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王师玮,陈 俊,易才键.基于改进ResNet50的皮肤病变图像分类[J].软件工程,2023,26(6):50-54.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进ResNet50的皮肤病变图像分类
王师玮, 陈 俊, 易才键
(福州大学物理与信息工程学院, 福建 福州 350108)
shiweiwangwsw@163.com; 56851@qq.com; ycjfzu1998@163.com
摘 要: 为解决皮肤科医生人工识别皮肤癌过程中存在效率低、劳动强度大等问题,提出一种皮肤病变图像分类模型DS-ResNet50。该模型在ResNet50(深度残差网络)的基础上进行改进:设计了双尺度空洞卷积模块,通过级联不同空洞率的深度卷积核提取不同尺度的特征信息并进行融合;引入轻量型注意力模块SimAM,使模型更好地聚焦主体目标提炼关键特征。选用Focal Loss函数,调节损失权重,使模型更关注难分类样本,提高对难分类样本的分类准确率。DS-ResNet50模型在ISIC2017数据集上的分类准确率比ResNet50模型提升了0.88%,验证了此模型的有效性。
关键词: 皮肤病变图像分类;空洞卷积;SimAM;Focal Loss
中图分类号: TP391.4    文献标识码: A
Image Classification of Skin Lesions Based on Improved ResNet50
WANG Shiwei, CHEN Jun, YI Caijian
(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China)
shiweiwangwsw@163.com; 56851@qq.com; ycjfzu1998@163.com
Abstract: In order to solve the problems of low efficiency and high labor intensity in the process of dermatologist's manual identification of skin cancer, this paper proposes a skin lesion image classification model DSResNet50, which is an improved model on the basis of ResNet50 ( deep residual network). A dual-scale dilated convolutional module is designed, and the feature information of different scales is extracted and fused by cascading deep convolutional kernel of different dilation rates. The lightweight attention module SimAM is introduced to make the model better focus on the main object and extract the key features. Focal Loss function is used to adjust the weight of loss, so that the model could pay more attention to the hard-to-classify samples and improve their classification accuracy. The classification accuracy of DS-ResNet50 model on ISIC2017 dataset is 0. 88% higher than that of ResNet50 model, which verifies the effectiveness of the proposed model.
Keywords: image classification of skin lesions; dilated convolution; SimAM; Focal Loss


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫