• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:孙 冰,李 好,黄鑫凯,任长宁,邹启杰.基于YOLOv7的人体关联实时吸烟目标检测方法[J].软件工程,2024,27(1):64-67.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于YOLOv7的人体关联实时吸烟目标检测方法
孙 冰1, 李 好1, 黄鑫凯1, 任长宁2, 邹启杰1
(1.大连大学, 辽宁 大连 116622;
2.大连东软信息学院, 辽宁 大连 116023)
15762467351@163.com; lihao@s.dlu.edu.cn; 1432796737@qq.com; renchangning@neusoft.edu.cn; 55440414@qq.com
摘 要: 聚焦以智能安防系统为基础的吸烟行为自动检测问题,解决复杂背景影响下吸烟检测的误检漏报缺陷,提出了基于YOLOv7的人体关联实时吸烟目标检测方法。通过定位香烟和场地内人员,利用目标关联的方式解决吸烟行为的实时检测问题。实验测得该方法的mAP 值为90%,帧率为130.1 FPS,结果说明基于YOLOv7的人体关联实时吸烟目标检测方法可适用于高精度的实时目标检测系统。
关键词: 吸烟检测;目标关联;YOLOv7;目标检测
中图分类号: TP391.4    文献标识码: A
基金项目: 国家级大学生创新创业训练项目(202211258001)
Real-Time Smoking Target Detection Method for Human Body Based on YOLOv7
SUN Bing1, LI Hao1, HUANG Xinkai1, REN Changning2, ZOU Qijie1
(1.Dalian University, Dalian 116622, China;
2.Dalian Neusof t University of Inf ormation, Dalian 116023, China)
15762467351@163.com; lihao@s.dlu.edu.cn; 1432796737@qq.com; renchangning@neusoft.edu.cn; 55440414@qq.com
Abstract: Focusing on the problem of automatic detection of smoking behavior based on intelligent security systems, this paper proposes a real-time smoking target detection method based on YOLOv7 to solve the problems of false detection and missed reporting defects of smoking detection under complex circumstances. By locating cigarettes and people in the venue, real-time detection of smoking behavior can be solved through target association. The experimental results show that the mAP value of the proposed method is 90% and the frame rate is 130. 1FPS, indicating that the real-time smoking target detection method for human body based on YOLOv7 is more suitable for high-precision real-time target detection systems.
Keywords: smoking detection; target association; YOLOv7; target detection


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫