• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张林龙,胡旭晓,胡克轸.基于改进DETR 模型的输电线路工程车辆检测研究[J].软件工程,2024,27(4):49-53.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进DETR 模型的输电线路工程车辆检测研究
张林龙1, 胡旭晓1, 胡克轸2
(1.浙江理工大学机械工程学院, 浙江 杭州 310018;
2.悉尼大学计算机学院, 澳大利亚 悉尼 NSW2006)
19357388782@163.com; huxuxiao@zju.edu.cn; 13588266234@163.com
摘 要: 针对人工检测大型工程车辆频繁进出施工现场容易出现漏检或误检的问题,文章提出一种改进DETR(基于Transformer的端到端目标检测网络)模型对输电线路工程车辆进行检测识别。首先在原始的DETR主干网络中,引入空洞卷积法获取更多深层次的特征,扩大感受野;其次加入特征金字塔网络(FPN),融合不同尺度的特征,增强特征的健壮性;最后将损失函数GIOU改为CIOU,使模型在训练的过程中达到更快和更好的收敛效果。实验结果显示,改进后的DETR模型在自制数据集中AP50(IOU阈值取0.5)和AP50-95(IOU阈值取0.5~0.95)分别达到了92.1%和61.3%,说明该改进模型在识别输电线路工程车辆场景中具有较高的应用价值。
关键词: 空洞卷积;特征金字塔网络;DETR;损失函数
中图分类号: TP311    文献标识码: A
Research on Transmission Line Engineering Vehicle Detection Based on Improved DETR Mode
ZHANG Linlong1, HU Xuxiao1, HU Kezhen2
(1.College of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.School of Computing University of Sydney, Sydney NSW2006, Australia)
19357388782@163.com; huxuxiao@zju.edu.cn; 13588266234@163.com
Abstract: In view of the problem of missing or false detection in manual detection of large engineering vehicles frequently entering and leaving the construction site, this paper proposes an improved DETR (End-to-End Object Detection with Transformers) model to detect and identify transmission line engineering vehicles. Firstly,in the original DETR backbone network, the dilated convolution method is introduced to obtain more deep features and enlarge the receptive field. Then,the Feature Pyramid Network (FPN) is added to fuse the features of different scales to enhance the robustness of the features. Finally, the loss function GIOU is changed to CIOU to make the model converge faster and better in the training process. The experimental results show that AP50 (IOU threshold of 0.5) and AP50-95 (IOU threshold of 0.5~0.95) of the improved DETR model reach 92.1% and 61.3% respectively in the self-made dataset, which indicates that the improved model has high value of application in identification of transmission line engineering vehicles.
Keywords: dilated convolution; FPN; DETR; loss function


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫