• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:施凯斌,李文书.基于Fairmot的交通违法行为算法研究[J].软件工程,2025,28(2):1-5.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于Fairmot的交通违法行为算法研究
施凯斌,李文书
(浙江理工大学计算机科学与技术学院,浙江 杭州 310018)
1103991878@qq.com; charlie@zstu.edu.cn
摘 要: 在监测交通违法行为的检测任务中,传统的人工监控与基础传感器方法因准确性和实时性存在局限而面临挑战。通过引入多目标跟踪技术,可以显著提升检测效率和系统识别的准确性。文章提出了一种针对车辆信息的多目标跟踪算法,使用MAU-DLA34(MixedAttentionUnit-DeepLayerAggregation34)作为主干网络,替换传统的DLA34主干网络。在处理高密度交通和复杂交互情况下,该算法的表现出色,AP达到73.6%,MOTA为82.9%,IDF1为79.3%,明显优于传统方法和其他深度学习方法,如JDE、DeepSort、CenterTrack等。该算法有效减少了身份切换,确保了对交通参与者的精准且连续跟踪。
关键词: 多目标跟踪;目标检测;Fairmot;交通违法行为
中图分类号: TP391.41    文献标识码: A
Research on Traffic Violation Detecti on Algorithm Basedon Fairmot
SHI Kaibin, LI Wenshu
(School of Computer Science and Technology, Zhejiang Sc-i Tech University, Hangzhou 310018, China)
1103991878@qq.com; charlie@zstu.edu.cn
Abstract: In the detection task of monitoring traffic violations, traditional manual monitoring and basic sensor methods face challenges due to limitations in accuracy and real-time capabilities. By introducing multi-object tracking technology, the detection efficiency and the accuracy of the system identification can be significantly enhanced. This paper proposes a multi-object tracking algorithm specifically designed for vehicle information, using MAU-DLA34 (Mixed Attention Unit-Deep Layer Aggregation 34) as the backbone network, replacing the traditional DLA34 backbone. In handling high-density traffic and complex interaction scenarios, the algorithm demonstrates outstanding performance, achieving an Average Precision (AP) of 73.6%, a Multi-Object Tracking Accuracy (MOTA) of 82.9%,and an IDF1 of 79.3%. These results significantly outperform traditional methods and other deep learning approaches,such as JDE, DeepSort, and CenterTrack. The pr
Keywords: multi-object tracking; object detection; Fairmot; traffic violations


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫