• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王 洁,刘天伦,邱溢阳.基于KPCA与IBWO优化SVM 的滚动轴承故障诊断研究[J].软件工程,2025,28(5):54-59.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于KPCA与IBWO优化SVM 的滚动轴承故障诊断研究
王 洁,刘天伦,邱溢阳
(武汉科技大学汽车与交通工程学院,湖北 武汉 430065)
wangjie1980@wust.edu.cn; 1941851860@qq.com; 645753223@qq.com
摘 要: 针对滚动轴承故障诊断中处理高维非线性特征数据的难题,提出了一种基于核主元分析(Kernel Principal Component Analysis,KPCA)和改进的白鲸优化算法(Improved Beluga Whale Optimizer,IBWO)优化支持向量机(Support Vector Machine,SVM)超参数的方法,即 KPCA-IBWO-SVM 模型。通过引入折射反向学习和旋风觅食策略,显著提升了IBWO的收敛速度和全局搜索能力。首先,利用 KPCA提取原始数据中的非线性主元特征;其次,通过SVM 模型完成故障诊断。实验结果表明,IBWO 算法相较于灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、麻雀搜索算法(SSA)及原始白鲸优化算法(BWO)等具有明显优势,KPCA-IBWO-SVM 模型的平均诊断准确率达到95.86%,比 KPCA-BWO-SVM 模型提升了6.54%,充分验证了所提方法的有效性和应用价值。
关键词: 改进的白鲸优化算法;支持向量机;故障诊断;核主成分分析;滚动轴承
中图分类号: TP277;TH133.33    文献标识码: A
Research on Rolling Bearing Fault Diagnosis Based on KPCA and IBWO-Optimized SVM
WANG Jie, LIU Tianlun, QIU Yiyang
(School of Automotive and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China)
wangjie1980@wust.edu.cn; 1941851860@qq.com; 645753223@qq.com
Abstract: To address the challenge of processing high-dimensional nonlinear feature data in rolling bearing fault diagnosis, this study proposes a method combining Kernel Principal Component Analysis (KPCA) and an Improved Beluga Whale Optimizer (IBWO) to optimize the hyperparameters of a Support Vector Machine (SVM), referred to as the KPCA-IBWO-SVM model. By introducing refracted opposition-based learning and a cyclone foraging strategy, the convergence speed and global search capability of the IBWO are significantly enhanced. Firstly, KPCA is utilized to extract nonlinear principal component features from raw data. Subsequently, the SVM model is employed for fault classification. Experimental results demonstrate that the IBWO algorithm outperforms the Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Sparrow Search Algorithm (SSA), and the original Beluga Whale Optimizer (BWO). The KPCA-IBWO-SVM model achieves an average diagnostic accuracy of 95.86% , representing a 6.54% improvement over the KPCA-BWO-SVM model, thereby fully validating the effectiveness and application value of the proposed method.
Keywords: Improved Beluga Whale Optimizer Algorithm (IBWO); Support Vector Machine (SVM); fault diagnosis; Kernel Principal Component Analysis (KPCA); rolling bearing


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫