• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:徐龙海,顾亦然.联合多粒度流行度感知的图协同过滤推荐模型[J].软件工程,2025,28(6):67-72.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
联合多粒度流行度感知的图协同过滤推荐模型
徐龙海,顾亦然
(南京邮电大学自动化、人工智能学院,江苏 南京 210023)
1222056229@njupt.edu.cn; guyr@njupt.edu.cn
摘 要: 针对现有图卷积推荐系统在捕捉用户个性化项目特征敏感性方面的不足,提出一种联合多粒度流行度感知的图协同过滤推荐模型。首先,采用多粒度流行度特征建模,有效缓解用户与项目交互矩阵的高稀疏性问题,从而揭示用户偏好在不同流行度特征上的细微差异。其次,引入对比学习辅助任务,通过自监督学习增强节点表达。最后,联合优化有监督推荐任务与自监督学习辅助任务,获得更加准确的推荐。在Gowalla、Yelp2018和Amazon-Book3个公开数据集上进行了对比实验。实验结果表明,该模型在 Recal@20 指标上分别取得了1.64%、3.54%、4.38%的提升,在 NDCG@20 指标上分别取得了 2.80%、6.69%、8.42%的提升,充分证明了模型的有效性和优越性。
关键词: 图卷积网络  自监督学习  协同过滤  多粒度流行度  对比学习
中图分类号: TP391.4    文献标识码: A
基金项目: 国家自然科学基金项目(61977039)
Joint Multi-grained Popularity-Aware Graph Collaborative Filtering Recommendation Model
XU Longhai, GU Yiran
(College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
1222056229@njupt.edu.cn; guyr@njupt.edu.cn
Abstract: Addressing the limitations of existing graph convolutional recommendation systems in capturing users’personalized sensitivity to item features, this paper proposes a joint mult-i grained popularity-aware graph collaborative filtering recommendation model. Firstly, the model employs mult-i grained popularity feature modeling to effectively alleviate the high sparsity of use-r item interaction matrices, thereby revealing nuanced variations in user preferences across different popularity characteristics. Secondly, a contrastive learning auxiliary task is introduced to enhance node representations through sel-f supervised learning. Finally, joint optimization of the supervised recommendation task and the sel-f supervised auxiliary task yields more accurate recommendations. Comparative experiments on three public datasets (Gowalla, Yelp2018, and Amazon-Book) demonstrate performance improvements: Recall @ 20 increased by 1.64%, 3.54% and superiority, and 4.38%, while NDCG@20 rose by 2.80%, 6.69%, and 8.42% respectively, validating the model’s effectiveness.
Keywords: graph convolutional networks  sel-f supervised learning  collaborative filtering  mult-i grained popularity  contrastive learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫