• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:朱立忠,杨皕淇.基于YOLO改进的绝缘子缺陷检测[J].软件工程,2025,28(7):34-38.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于YOLO改进的绝缘子缺陷检测
朱立忠,杨皕淇
(沈阳理工大学自动化与电气工程学院 , 辽宁 沈阳 110159)
zlz2686312@sina.com; 2252448739@qq.com
摘 要: 针对绝缘子检测背景条件复杂,对小目标和被遮挡绝缘子缺陷检测精度低的问题,提出了改进的YOLOv10n绝缘子缺陷检测系统。在模型优化方面采取EfficientViT网络替换C2f模块和卷积模块,减少模型复杂程度,提高检测效率,并选取加入 ACmix注意力机制,更高效提取特征信息,用于有效提升检测精度。引入SIoU损失函数,提高模型收敛速度和鲁棒性。通过实验验证改进后模型的检测效果,最终实验结果表明,改进后的 AEYOLOv10n网络能在大量图像中精准有效地识别绝缘子的缺陷,精确率、召回率分别达到了96.3%和93.8%,平均精度由90.4%提升到了98.1%,为电力系统运行提供有力支持。
关键词: 深度学习  绝缘子目标检测  EfficientViT  ACmix注意力机制  损失函数优化
中图分类号: TP391.4    文献标识码: A
基金项目: 国家重点研发计划项目(2017YFC0821001-2)
Improved YOLO-Based Insulator Defect Detection
ZHU Lizhong, YANG Biqi
(School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China)
zlz2686312@sina.com; 2252448739@qq.com
Abstract: To address the challenges of complex backgrounds in insulator detection and low accuracy in identifying small or occluded insulator defects, this study proposes an enhanced YOLOv10n insulator defect detection system. For model optimization, the C2f module and convolutional blocks are replaced with the EfficientViT network to reduce model complexity and improve detection efficiency. The ACmix attention mechanism is incorporated to extract feature information more effectively, thereby enhancing detection accuracy. The SIoU loss function is introduced to accelerate model convergence and improve robustness. Experimental validation demonstrates that the improved AEYOLOv10n network achieves precise and efficient identification of insulator defects across large-scale image datasets.The final results show precision and recall rates of 96.3% and 93.8% , respectively, while the mean average precision (mAP) increased from 90.4% to 98.1% . This advancement contributes significantly to power system operations.
Keywords: deep learning  insulator object detection  EfficientViT  ACmix attention mechanism  loss function optimization


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫