• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王剑峰,李玥.基于改进GoogLeNet的小麦病虫害分类识别研究[J].软件工程,2025,28(7):48-51.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进GoogLeNet的小麦病虫害分类识别研究
王剑峰,李玥
(甘肃农业大学信息科学技术学院,甘肃 兰州 730070)
a1393607499@163.com; liyue@gsau.edu.cn
摘 要: 针对小麦病虫害分类识别研究中卷积神经网络加深导致的梯度消失和爆炸等问题,提出了一种基于改进GoogLeNet的识别方法。首先,构建小麦病虫害数据集 Wheat11,并通过数据增强技术保持样本间的平衡;其次,引入CBAM注意力机制,并改进注意力模块,增强网络对病虫害特征的提取能力;最后,在Inception模块中引入残差结构,有效缓解梯度消失和爆炸等问题。试验结果表明,改进模型在测试集上的准确率达到94.50%,比未改进前 提升3.30%。该模型在小麦病虫害上有更好的分类识别效果,为后续小麦病虫害防治提供方法指导。
关键词: 小麦病虫害  GoogLeNet  注意力机制  残差结构  卷积神经网络
中图分类号: TP391    文献标识码: A
Research on Classification of Wheat Diseases and Pests Based on Improved GoogLeNet
WANG Jianfeng, LI Yue
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)
a1393607499@163.com; liyue@gsau.edu.cn
Abstract: To address issues such as gradient vanishing and explosion caused by deepening convolutional neural networks in wheat disease and pest classification research, this study proposes an improved GoogLeNe-t based recognition method. Firstly, the Wheat11 dataset (with 11 categories) was constructed, with sample balance maintained through data augmentation techniques. Secondly, the CBAM attention mechanism was introduced, and the attention module was optimized to enhance the network’s feature extraction capability for disease and pest characteristics.Finally, residual structures were integrated into the Inception modules, effectively mitigating gradient vanishing and explosion problems. Experimental results demonstrate that the improved model achieved an accuracy of 94.50% on the test set, representing a 3.30-percentage-point improvement compared with the original model. This model exhibits superior classification and recognition performance for wheat diseases and pests, providing methodological guidance for subsequent prevention and control efforts.
Keywords: wheat diseases and pests  GoogLeNet  attention mechanism  residual structure  convolutional neural network


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫