• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张新生,侯怡君.融合多层次特征的网络暴力言论情绪分析[J].软件工程,2025,28(7):69-78.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
融合多层次特征的网络暴力言论情绪分析
张新生,侯怡君
(西安建筑科技大学管理学院,陕西 西安 710055)
zhangxs@xauat.edu.cn; 770685540@qq.com
摘 要: 网络暴力在短时间内就能对个人或群体造成极大伤害。针对目前缺乏网络暴力中文评论语料库、难以准确捕捉文本情绪特征和实现极端暴力情绪倾向的分类存在挑战的问题,在构建网络暴力中文语料库的基础上,提 出一种融合多层次特征的网络暴力情绪分析方法。将评论文本词嵌入得到原始语义特征后,由融合长短期记忆网络(LongShort-Term Memory,LSTM)获取文本全局上下文信息,由文本卷积神经网络(TextConvolutionalNeural Networks,TextCNN)获取局部关键信息,最后将三个特征融合,通过全连接层输出三分类结果。通过对比实验与消融实验验证了模型的有效性,该情绪分析方法宏平均F1值达到80.88%,显著优于其他基线模型。
关键词: 网络暴力  情绪分析  中文语料库  长短期记忆网络  文本卷积神经网络
中图分类号: TP391    文献标识码: A
基金项目: 陕西省重点产业创新链(群)———工业领域项目(2022ZDLGY06-04)
Sentiment Analysis of Cyberbullying Text by Integrating Multi-Level Features
ZHANG Xinsheng, HOU Yijun
(School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)
zhangxs@xauat.edu.cn; 770685540@qq.com
Abstract: Cyberbullying can inflict significant harm on individuals or groups within a short timeframe. Addressing the current lack of a Chinese cyberbullying comment corpus and the challenges in accurately capturing textual sentiment features for classifying extreme violent sentiment tendencies, this paper constructs a Chinese cyberbullying corpus and proposes a sentiment analysis method integrating mult-i level features. After obtaining the original semantic features through word embedding of comment texts, the method leverages Long Shor-t Term Memory (LSTM) to capture global contextual information and Text Convolutional Neural Networks (TextCNN) to extract local key information. The three features are then fused and passed through a fully connected layer to output three-class classification results. Comparative and ablation experiments confirm the model’s effectiveness, achieving a macro averaged F1-score of 80.88% , significantly outperforming other baseline models.
Keywords: cyberbullying  sentiment analysis  Chinese corpus  Long Shor-t Term Memory ( LSTM)  Text Convolutional Neural Network (TextCNN)


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫