• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张晗烁,姜明,张旻.基于深度学习实现增强更新的文本检测模型[J].软件工程,2025,28(8):5-8.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习实现增强更新的文本检测模型
张晗烁,姜明,张旻
(杭州电子科技大学计算机学院,浙江 杭州 310018)
zhs1316168044@163.com; jmzju@163.com; hz_andy@163.com
摘 要: 为了应对场景文本检测的查询更新上依赖隐式更新的挑战,提出了基于深度学习实现增强更新的文本检测模型。该模型首先对边界框的控制点进行建模完成查询的初始化。在解码过程中,该模型不仅利用解码器的注意力机制,还结合当前解码器层及后续层的预测信息来指导查询进行更精确的增强更新。此外,还引入了预测聚合模块,它能够对相似的控制点预测进行聚合,从而提高了检测的鲁棒性。Total-Text数据集上的实验,结果表明,Recall提升了0.7%,F-measure提升了0.3%,验证了该方案的有效性。
关键词: 文本检测  增强更新  深度学习  预测聚合
中图分类号: TP391    文献标识码: A
基金项目: 浙江省科技计划项目(2024C01181)
A Text Detection Model with Enhanced Updates Based on Deep Learning
ZHANG Hanshuo, JIANG Ming, ZHANG Min
(School of Computer, Hangzhou Dianzi University, Hangzhou 310018, China)
zhs1316168044@163.com; jmzju@163.com; hz_andy@163.com
Abstract: To address the challenge of implicit update dependency in query updates for scene text detection, this paper proposes a deep learning-based text detection model with enhanced updates. The model first initializes queries by modeling the control points of bounding boxes. During the decoding process, it not only leverages the attention mechanism of the decoder but also incorporates prediction information from both the current and subsequent decoder layers to guide more precise and enhanced query updates. Additionally, a prediction aggregation module is introduced to aggregate predictions of similar control points, thereby improving detection robustness. Experiments conducted on the Total-Text dataset demonstrate the effectiveness of the proposed method, achieving a 0.7% improvement in recall and a 0.3% increase in F-measure.
Keywords: text detection  enhanced updates  deep learning  prediction aggregation


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫