• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张进峰,张捷皓,向忠.基于改进CycleGAN进行无监督织物瑕疵生成[J].软件工程,2025,28(8):32-37.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进CycleGAN进行无监督织物瑕疵生成
张进峰,张捷皓,向忠
(浙江理工大学机械工程学院,浙江 杭州 310018)
zjf 971120@163.com; zszhangjh1999@163.com; xz@zstu.edu.cn
摘 要: 织物瑕疵种类繁多且获取困难,导致织物瑕疵检测具有一定的挑战性。为解决此难题,提出了一种基于改进CycleGAN模型的织物瑕疵图像生成方法,旨在丰富织物数据集。引入U-Net并对其特征提取模块进行优化,设计一种并行扩张双向注意力结构,以有效提取图像纹理和边缘特征信息。在快速连接中,加入混合注意力结构以有效过滤冗余信息,并设计深度残差结构增强模型表达能力和网络深度。实验结果表明,该模型在FID、PSNR及LPIPS等关键指标上均表现出显著优势,充分验证了其优越性。
关键词: CycleGAN  织物瑕疵生成  生成对抗网络  无监督学习
中图分类号: TP391    文献标识码: A
Unsupervised Fabric Defect Generation Based on Improved CycleGAN
ZHANG Jinfeng, ZHANG Jiehao, XIANG Zhong
(School of Mechanical Engineering, Zhejiang Sc-i Tech University, Hangzhou 310018, China)
zjf 971120@163.com; zszhangjh1999@163.com; xz@zstu.edu.cn
Abstract: The diversity and scarcity of fabric defects pose significant challenges to defect detection in textile manufacturing. To address this issue, this paper proposes an improved CycleGAN-based defect generation method to enrich fabric datasets. We introduce a U-Net architecture with optimized feature extraction modules and design a parallel dilated bidirectional attention structure to effectively capture texture and edge features. Within the skip connections, a hybrid attention mechanism is incorporated to filter redundant information, while a deep residual structure enhances the model’s expressive capacity and network depth. Experimental results demonstrate the model’s superior performance across key metrics (FID, PSNR, and LPIPS), validating its effectiveness.
Keywords: CycleGAN  fabric defect generation  generative adversarial networks  unsupervised learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫