• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王婷渲,尹裴.基于LERT与CoMet的生成式员工情感识别研究[J].软件工程,2025,28(9):14-18.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于LERT与CoMet的生成式员工情感识别研究
王婷渲,尹裴
(上海理工大学管理学院,上海 200093)
15968612285@163.com; pyin@usst.edu.cn
摘 要: 针对员工情感文本识别中样本数量有限且情感表达复杂的问题,提出结合常识知识模型CoMet与预训练语言模型LERT的情感识别方法。首先,利用DeepSeek生成涵盖悲伤、信任、喜悦、恐惧、怀疑、愤怒和自我否定7类情感的员工对话数据集,并进行情感倾向标注;然后,基于LERT模型结合CoMet模型,通过引入对话主体的目标识别与常识知识,增强模型对情感状态的理解与识别能力。实验结果表明,该方法在情感识别准确性上较传统方法平均提升10.2%,为情感分析提供了新的技术路径。
关键词: 深度学习  LERT  CoMet  对话情感识别
中图分类号:     文献标识码: A
基金项目: 教育部人文社会科学研究一般项目(23YJCZH281);上海市哲学社会科学规划课题(2022ZGL010);信息网络安全公安部重点实验室开放课题
Research on Generative Employee Emotion Recognition Based on LERT and CoMet
WANG Tingxuan, YIN Pei
(Business School, University of Shanghai for Science & Technology, Shanghai 200093, China)
15968612285@163.com; pyin@usst.edu.cn
Abstract: To address the challenges of limited sample size and complex emotional expressions in employee sentiment text recognition, this paper proposes an emotion recognition method combining the commonsense knowledge model CoMet and the pre-trained language model LERT. First, a dataset of employee dialogues covering seven emotion categories (sadness, trust, joy, fear, doubt, anger, and sel-f denial) was generated using DeepSeek, with sentiment annotations applied. Subsequently, by integrating CoMet with the LERT model, the approach enhances the model’s understanding and recognition of emotional states through intent recognition of dialogue subjects and commonsense knowledge integration. Experimental results demonstrate that this method achieves an average improvement of 10.2 percentage points in emotion recognition accuracy compared to traditional approaches, offering a novel technical pathway for sentiment analysis.
Keywords: deep learning  LERT  CoMet  conversational emotion recognition


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫