• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:范兴鸿,陈湘萍,谷浩,赵粟,蒋浩.基于CycleGAN网络对OCT图像实现去模糊去噪[J].软件工程,2025,28(9):73-78.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于CycleGAN网络对OCT图像实现去模糊去噪
范兴鸿1,陈湘萍1,谷浩2,赵粟2,蒋浩2
(1.贵州大学电气工程学院,贵州 贵阳 550025;
2.贵州医科大学,贵州 贵阳 550002)
18586378117@163.com; ee.xpchen@gzu.edu.cn; guhao@gmc.edu.cu; ximi520@sina.com; kidd5jh0@sina.com
摘 要: 光学相干断层扫描(Optical Coherence Tomography,OCT)图像在采集过程中常遭受噪声影响,导致成像结构模糊和失真。为有效消除OCT图像中的噪声并提高图像清晰度,基于CycleGAN网络架构,通过加入SE模块、DSC模块和优化损失函数,并采用无监督学习方式处理OCT图像。实验结果表明,这些方法在去噪和去模糊方面优于传统方法和其他无监督深度学习技术,尤其在图像清晰度方面,比传统降噪方法的PSNR值高了10%以上。本研究突显了深度学习技术在医学图像处理中的潜力与实用价值,为未来的临床应用提供了新的指导方法。
关键词: OCT图像去模糊  OCT图像去噪  无监督学习  CycleGAN网络
中图分类号:     文献标识码: A
基金项目: 贵州省科技计划项目(黔科合支撑[2022]一般184)
Deblurringand Denoising OCT Images Based on CycleGAN Network
FAN Xinghong1, CHEN Xiangping1, GU Hao2, ZHAO Su2, JIANG Hao2
(1.College of Electrical Engineering, Guizhou University, Guiyang 550025, China;
2.Guizhou Medical University, Guiyang 550002, China)
18586378117@163.com; ee.xpchen@gzu.edu.cn; guhao@gmc.edu.cu; ximi520@sina.com; kidd5jh0@sina.com
Abstract: Optical Coherence Tomography (OCT) images are often affected by noise during acquisition, leading to blurred structures and distortions. To effectively eliminate noise and enhance image clarity in OCT images, this study leverages the CycleGAN network architecture, incorporating SE (Squeeze-and-Excitation) modules, DSC(Depthwise Separable Convolution) modules, and optimized loss functions, while employing unsupervised learning for OCT image processing. Experimental results demonstrate that these methods outperform traditional approaches and other unsupervised deep learning techniques in denoising and deblurring, particularly in image clarity, achieving a PSNR value over 10% higher than conventional denoising methods. This study highlights the potential and practical value of deep learning in medical image processing, providing new guidance for future clinical applications.
Keywords: OCT image deblurring  OCT image denoising  unsupervised learning  CycleGAN network


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫