• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:蒋露露,沈项军.基于聚类表征的支持向量机分类方法[J].软件工程,2025,28(10):17-21.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于聚类表征的支持向量机分类方法
蒋露露,沈项军
(江苏大学计算机科学与通信工程学院,江苏 镇江 212013)
2544998926@qq.com; xjshen@ujs.edu.cn
摘 要: 传统的支持向量机分类算法在面对分类环境中的复杂噪声问题时往往存在局限性。针对这一问题提出一种基于聚类表征的支持向量机分类方法。利用样本之间的距离信息自适应学习具有一定概率邻域分配的结构化图。此外,通过邻域样本构造一个新的数据样本能够增强其数据表征,有助于更好地避免分类器受到噪声干扰。通过原数据下以及大量噪声诱导场景下的各项实验验证,实验结果平均提升了4%,证明该方法在解决分类噪声问题上具有显著的效果。
关键词: 支持向量机  样本空间  噪声  聚类  表征学习
中图分类号: TP181    文献标识码: A
基金项目: 国家自然科学基金项目(62376108)
Support Vector Machine Classification Method Based on Clustering Representation
JIANG Lulu, SHEN Xiangjun
(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China)
2544998926@qq.com; xjshen@ujs.edu.cn
Abstract: Traditional Support Vector Machine (SVM) classification algorithms often exhibit limitations when dealing with complex noise problems in classification environments. To address this issue, this paper proposes a clustering representation-based SVM classification method. It adaptively learns a structured graph with probabilistic neighborhood assignments by utilizing distance information between samples. Furthermore, constructing a new data sample using neighborhood samples enhances its data representation, which helps the classifier better avoid noise interference. Experimental results conducted on the original data and under numerous noise-induced scenarios demonstrate that the proposed method achieves an average improvement of 4 percentage points, proving its significant effectiveness in solving classification noise problems.
Keywords: support vector machine (SVM)  sample space  noise  clustering  representation learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫