• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王健文,刘成忠,韩俊英,曲亚英,马柏雄.基于改进ResNet50的马铃薯识别与分类方法研究[J].软件工程,2025,28(10):58-62.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进ResNet50的马铃薯识别与分类方法研究
王健文1,刘成忠1,韩俊英1,曲亚英2,马柏雄1
(1.甘肃农业大学信息科学技术学院,甘肃 兰州 730070;
2.甘肃省农科院马铃薯研究所,甘肃 兰州 730070)
1341673306@qq.com; liucz@gsau.edu.cn; hanjy@gsau.edu.cn; 605314800@qq.com; 3126540493@qq.com
摘 要: 针对自然条件下马铃薯块茎品种识别效率低、准确性差及化学分析法的不足,提出基于改进 ResNet50模型的识别方法。该方法通过在主干网络引入注意力模块,调整网络结构,采用 AdamW 优化器,加入迁移学习等改进措施,有效提升了模型性能。实验基于69个品种、30930张图片的数据集,最终识别准确率达99.42%,精确率、召回率、F1值也表现优异,相比 MobileNet_V2、GoogLeNet和ResNet50有显著提高,为马铃薯产业智能化管理提供了可靠技术支撑。
关键词: 深度学习  ResNet50  马铃薯品种识别  注意力机制  迁移学习
中图分类号: TP391    文献标识码: A
基金项目: 国家自然科学基金项目(32360437);甘肃省高等学校产业支撑计划项目(2021CYZC-57)
Research on Potato Recognition and Classification Method Based on the Improved ResNet50
WANG Jianwen1,LIU Chengzhong1, HAN Junying1, QU Yaying2, MA Baixiong1
(1.College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
2.Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China)
1341673306@qq.com; liucz@gsau.edu.cn; hanjy@gsau.edu.cn; 605314800@qq.com; 3126540493@qq.com
Abstract: To address the low efficiency and accuracy of potato tuber variety recognition under natural conditions, as well as the limitations of chemical analysis methods, this study proposes an identification approach based on an improved ResNet50 model. The method incorporates several enhancements: introducing an attention module into the backbone network, adjusting the network structure, adopting the AdamW optimizer, and integrating transfer learning.These improvements significantly boost model performance. Experiments were conducted on a dataset comprising 30 930 images across 69 potato varieties. The final recognition accuracy reached 99.42% , with outstanding results in precision, recall, and F1-score. Compared to MobileNet_V2, GoogLeNet, and the original ResNet50, the proposed model demonstrates substantial improvements, offering reliable technical support for intelligent management in the potato industry.
Keywords: deep learning  ResNet50  potato variety identification  attention mechanism  transfer learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫