• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张泽宇,张颖娇,张宏俊,叶昊.基于知识图谱的个性化学习推荐系统深度学习优化方法研究[J].软件工程,2025,28(10):67-71.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于知识图谱的个性化学习推荐系统深度学习优化方法研究
张泽宇1,张颖娇2,张宏俊3,4,叶昊2
(1. 中国移动通信集团北京有限公司,北京 100032;
2. 南京邮电大学国家邮政局邮政行业技术研发中心(物联网技术),江苏 南京 210003;
3. 南京邮电大学物联网学院,江苏 南京 210003;
4. 中国通信服务股份有限公司,北京 100073)
13605511234alex@gmail.com; 1223097109@njupt.edu.cn; 2021070702@njupt.edu.cn; 1221097407@njupt.edu.cn
摘 要: 提出了一种融合知识图谱与深度学习的优化策略,以提升个性化学习推荐系统的推荐质量和用户体验,解决数据稀疏性与冷启动问题。通过构建涵盖学习者、教育资源及其关联关系的知识图谱,为系统提供语义信息和结构化知识支持,并利用余弦相似度匹配学习者属性与资源特征,精准满足需求。同时,结合深度神经网络捕捉偏好与资源特性间的非线性关联,进一步优化推荐性能。实验结果表明,该方法在预测准确性、推荐覆盖率和多样性上分别提升11.8%、14.3%和9.7%,并在用户满意度与知识掌握度等指标上表现出优势。
关键词: 个性化学习推荐系统  知识图谱  深度学习  数据稀疏性优化  推荐算法优化
中图分类号: TP311.13    文献标识码: A
基金项目: 国家自然科学基金项目(32360437);甘肃省高等学校产业支撑计划项目(2021CYZC-57)
Research on Deep Learning Optimization Methods for Knowledge Graph-Based Personalized Learning Recommendation Systems
ZHANG Zeyu1,ZHANG Yingjiao2, ZHANG Hongjun3,4, YE Hao2
(1. China Mobile Group Beijing Co., Ltd., Beijing 100032;
2. Postal Industry Technology Research and Development Center of State Post Bureau of Nanjing University of Posts and Telecommunications(Internet of Things Technology), Nanjing 210003, China;
3. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4. China Telecommunications Services Co., Ltd., Beijing 100073, China)
13605511234alex@gmail.com; 1223097109@njupt.edu.cn; 2021070702@njupt.edu.cn; 1221097407@njupt.edu.cn
Abstract: This study proposes an optimization strategy integrating knowledge graphs and deep learning to enhance the recommendation quality and user experience of personalized learning recommendation systems, addressing data sparsity and cold start issues. By constructing a knowledge graph encompassing learners, educational resources, and their interrelationships, the system gains semantic information and structured knowledge support. Cosine similarity is employed to match learner attributes with resource features, thereby precisely meeting demands. Concurrently, deep neural networks capture nonlinear associations between preferences and resource characteristics to further optimize recommendation performance. Experimental results demonstrate that this method achieves improvements of 11.8% , 14.3% , and 9.7% in prediction accuracy, recommendation coverage, and diversity, respectively, while also exhibiting advantages in user satisfaction and knowledge mastery metrics.
Keywords: personalized learning recommendation system  knowledge graph  deep learning  data sparsity optimization  recommendation algorithm optimization


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫