• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:顾硕天,吴江,王亮.基于改进RT-DETR的车辆行人检测算法[J].软件工程,2025,28(11):6-10.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进RT-DETR的车辆行人检测算法
顾硕天1,吴江1,王亮2
(1.浙江理工大学信息与科学工程学院,浙江 杭州 310008;
2.浙江香农通信科技有限公司,浙江 杭州 310011)
576967638@qq.com; wujiang@zstu.edu.cn; 13401157573@139.com
摘 要: 针对复杂场景下车辆行人检测效果不佳的问题,提出了一种改进RT-DETR(Real-Time Detection Transformer)模型对复杂环境下的车辆和行人进行定位。通过可学习的位置编码增强模型对空间关系和目标位置的感知能力,引入可变形卷积DCN(Deformable Convolution)以更好地捕获尺度变化复杂的目标特征,并在特征融合阶段采用LSK(Large Selection Kernel)BLOCK引导跨尺度特征的高效融合。实验结果显示,提出的模型在KITTI数据集上的mAP@0.5指标达到96.1%,较基准模型提升了2.8%,验证了该改进模型在提升车辆行人检测任务性能方面的有效性。
关键词: 自动驾驶  RT-DETR  可学习的位置编码  可变形卷积  LSKBLOCK
中图分类号:     文献标识码: A
基金项目: 基于有限元分析的交叉韧带生物力学特性与膝骨关节炎致病机理的研究(黔科合基础-ZK[2023]一般052)
Vehicle and Pedestrian Detection Algorithm Based on Improved RT-DETR
GU Shuotian1, WU Jiang1, WANG Liang2
(1.School of Information Science and Engineering, Zhejiang Sc-i Tech University, Hangzhou 310008, China;
2.Zhejiang Shannon Communication Technology Co., Ltd., Hangzhou 310011, China)
576967638@qq.com; wujiang@zstu.edu.cn; 13401157573@139.com
Abstract: To address the suboptimal detection performance of vehicles and pedestrians in complex scenarios, this paper proposes an improved RT-DETR (Rea-l Time Detection Transformer)model for localizing vehicles and pedestrians in challenging environments. The model enhances spatial relationship and target localization perception through learnable position encoding, incorporates Deformable Convolution (DCN) to better capture features of targets with complex scale variations, and employs Large Selection Kernel(LSK)BLOCK during feature fusion to guide efficient cross-scale feature integration. Experimental results demonstrate that the proposed model achieves 96.1% mAP@0.5 on the KITTI dataset, representing a 2.8% improvement against the baseline model. This validates the effectiveness of the enhanced model in advancing vehicle and pedestrian detection performance.
Keywords: autonomous driving  RT-DETR  learnable position encoding  deformable convolution  LSK BLOCK


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫