• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:刘智敏,卢荡,高雄.基于TD3-PER的智能车辆跟驰策略研究[J].软件工程,2025,28(11):22-27.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于TD3-PER的智能车辆跟驰策略研究
刘智敏1,2,卢荡1,高雄1
(1.福建理工大学新能源车辆运动控制研究院,福建 福州 350118;
2.福建理工大学电子电气与物理学院,福建 福州 350118)
1009439938@qq.com; ludang@jlu.edu.cn; 62202303@fjut.edu.cn
摘 要: 针对自动驾驶中复杂跟驰场景,提出了一种基于优先经验回放的双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient with Prioritized Experience Replay,TD3-PER)算法的车辆跟驰控制策略。该策略结合安全性、舒适性和效率设计奖励函数,并引入容忍范围机制和优先经验回放算法,以提升适应性和训练效率。通过PreScan/Simulink仿真验证,结果表明:相比模型预测控制(Model Predictive Control,MPC)、深度Q网络(DeepQ-Network,DQN)和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG),该策略在安全隐患方面分别降低65.64%、31.14%和48.78%;行驶效率提升15.85%、17.24%和12.24%;舒适性改善16.67%、61.66%和7.77%。紧急制动场景下,在安全隐患方面分别降低68.06%、43.96%和22.96%,展现出优越的控制性能和适应性。
关键词: 智能交通  自动驾驶  跟驰模型  深度强化学习  优先经验回放
中图分类号:     文献标识码: A
基金项目: 江苏省自然科学基金项目(BK20171303)
Research on Intelligent Vehicle Car-Following Strategy Based on TD3-PER
LIU Zhimin1,2, LU Dang1, GAO Xiong1
(1. New Energy Vehicle Motion Control Research Institute, Fujian University of Technology, Fuzhou 350118, China;
2. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China)
1009439938@qq.com; ludang@jlu.edu.cn; 62202303@fjut.edu.cn
Abstract: To address complex ca-r following scenarios in autonomous driving, this study proposes a vehicle ca-r following control strategy using the Twin Delayed Deep Deterministic policy gradient with Prioritized Experience Replay (TD3-PER) algorithm. The strategy designs a reward function integrating safety, comfort, and efficiency, while introducing a tolerance range mechanism and prioritized experience replay to enhance adaptability and training efficiency. Simulations via PreScan/Simulink demonstrate that compared to MPC, DQN, and DDPG, the proposed strategy achieves 65.64% , 31.14% , and 48.78% reduction in safety risks; 15.85% , 17.24% , and 12.24% improvement in driving efficiency; and 16.67% , 61.66% , and 7.77% enhancement in comfort respectively. In emergency braking scenarios, it further reduces safety risks by 68.06% , 43.96% , and 22.96% , showcasing superior control performance and adaptability.
Keywords: intelligent transportation  autonomous driving  car following model  deep reinforcement learning  prioritized experience replay


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫