• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:巩 震,陈丹红.人脸识别技术的算法优化和流程修改研究[J].软件工程,2021,24(1):10-12.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
人脸识别技术的算法优化和流程修改研究
巩 震,陈丹红
(沈阳航空航天大学,辽宁 沈阳 110136)
1522613033@qq.com; 15076875405@qq.com
摘 要: 目前,在普通手机解锁、面部锁定、面部扫描支付和安全防卫等领域,人脸识别信息技术都有着非常广泛的应用。传统的机器学习算法是基于人的脸部特征的,由于每类样本的不均衡性严重和场景效果的欠缺等因素,算法实现的效果常常不是很理想。本文将针对目前人脸识别技术领域的高语义特征及深度特征提取的缺陷,以及人工提取存在的误差,运用深度学习算法和类比中心等算法,提高人脸识别在特征提取领域的技术能力。利用卷积神经网络减少人工干预,提高特征提取的算法精度,从而提高损失函数的精确值。
关键词: 人脸识别;算法优化;深度学习;卷积神经网络
中图分类号: TP312    文献标识码: A
基金项目: 沈阳航空航天大学大学生创新创业训练计划项目(S202010143007).
Study on Algorithm Optimization and Process Modification of Face Recognition Technology
GONG Zhen, CHEN Danhong
(Shenyang Aerospace University, Shenyang 110136, China )
1522613033@qq.com; 15076875405@qq.com
Abstract: Face recognition technology is widely used in ordinary mobile phone unlocking, face locking, face scanning payment, and security protection. Traditional machine learning algorithms are based on human facial features, and the effect is often not ideal due to serious imbalance of each type of sample and lack of scene effect. This paper aims to use deep learning algorithm and analog center algorithm to improve technical capability of face recognition with respect to feature extraction. Thus, defects of high semantic features and deep feature extraction, as well as errors in manual extraction will be greatly reduced. Convolutional neural network is used to reduce manual intervention, improve accuracy of feature extraction algorithm, so to improve the performance of loss function.
Keywords: face recognition; algorithm optimization; deep learning; convolutional neural network


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫