• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:黄生鹏,范平清.基于深度学习的实时车辆检测研究[J].软件工程,2021,24(1):13-16.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的实时车辆检测研究
黄生鹏,范平清
(上海工程技术大学机械与汽车工程学院,上海 201620)
hsp0285@163.com; fanpingqing@163.com
摘 要: 针对城市交通复杂场景下车辆检测存在准确率低的问题,提出改进SSD(单发多箱探测器)目标检测算法。首先基于轻量化的PeleeNet(一种基于密集卷积网络的轻量化网络变体)网络结构改进SSD算法中VGG16(视觉几何群网络)特征提取网络,在保证提取丰富特征的前提下,有效地减少模型参数,提高模型的实时性;其次设计了多尺度特征融合模块和底层特征增强模块,提高特征的表达性能;最后根据数据集中目标的大小调整默认框的长宽比例,并在后三个特征层的每个单元上增加默认框。实验结果表明,改进后的目标检测算法的准确率mAP(平均精度)为79.83%,与原始SSD相比提高了2.25%,并验证了改进SSD算法的有效性。
关键词: 实时性;SSD;默认框;特征提取
中图分类号: TP391    文献标识码: A
基金项目: 上汽工业科技发展基金会项目 (1910);新能源汽车振动噪声测试与控制专业技术服务平台(18DZ2295900).
Research on Real-Time Vehicle Detection based on Deep Learning
HUANG Shengpeng, FAN Pingqing
(Shanghai University of Engineering Science, School of Mechanical and Automotive Engineering, Shanghai 201620, China)
hsp0285@163.com; fanpingqing@163.com
Abstract: This paper proposes an improved SSD (Single Shot Multiple Box Detector) target detection algorithm to improve the vehicle detection accuracy in complex urban traffic scenarios. Firstly, VGG16 (Visual Geometry Group Network) feature extraction network algorithm in SSD is improved based on the lightweight PeleeNet (A lightweight network variant based on dense convolution network.) network structure. Under the premise of ensuring the extraction of rich features, it can effectively reduce model parameters and improve the real-time performance of the model. Secondly, a multi-scale feature fusion module and a low-level feature enhancement module are designed to improve the expression performance of features. Finally, length-width ratio of the default frame is adjusted according to the target size in data set, and the default frame is added to each cell of the last three feature layers. Experimental results show that the accuracy of mAP (mean Average Precision) of target detection algorithm is improved to 79.83%, which is 2.25% higher than the original SSD. So the improved SSD algorithm is verified to be effective.
Keywords: real-time; SSD; default frame; feature extraction


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫