• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:居晓媛,汪明艳.融合标签文本的k-means聚类和矩阵分解算法[J].软件工程,2023,26(6):30-34.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
融合标签文本的k-means聚类和矩阵分解算法
居晓媛, 汪明艳
(上海工程技术大学管理学院, 上海 201620)
ju_xiaoyuan_123@163.com; wmy61610@126.com
摘 要: 针对推荐系统中依赖用户对项目的评分信息带来的稀疏性问题,提出一种融合标签文本的k-means聚类和矩阵分解的推荐算法。该模型首先对项目信息构建项目特征画像,利用k-means聚类提取项目的潜在特征数量,然后利用隐语义模型LFM 进行矩阵分解,将用户-评分矩阵进行分解重构得到预测评级,并根据排序推荐。将算法在MovieLens数据集上进行实验,结果表明该推荐算法的均方根误差(RMSE)和绝对平均误差(MAE)表现较好,在ml-latest-small数据集中的准确率(precision)和召回率(recall)较次优算法分别提升了14.5%和20.7%。通过将k-means聚类应用到用户的潜在兴趣和项目的潜在特征提取中,提升了推荐算法的有效性。
关键词: 推荐算法;矩阵分解;k-means;LFM
中图分类号: TP391    文献标识码: A
An Algorithm of Combining K-means Clustering and Matrix Decomposition of Label Text
JU Xiaoyuan, WANG Mingyan
(School of Management, Shanghai University of Engineering Science, Shanghai 201620, China)
ju_xiaoyuan_123@163.com; wmy61610@126.com
Abstract: Aiming at the sparsity problem caused by the reliance on user rating information for projects in recommendation systems, this paper proposes a recommendation algorithm combining k-means clustering and matrix decomposition of label text. In this model, a project feature portrait is firstly constructed based on project information, and the number of potential features of the project are extracted by using k-means clustering. Then, Latent Factor Model (LFM) is used for matrix decomposition. The user-rating matrix is decomposed and reconstructed to obtain a predictive rating, and recommendations are made based on sorting. The algorithm has been tested on the MovieLens dataset, and the results shows that the proposed recommended algorithm performs well in root mean square error (RMSE) and absolute mean error (MAE). The accuracy and recall rates in the ml-latest-small dataset are improved by 14.5% and 20.7% , respectively. K-means clustering is applied to the extraction of users' potential interests and items' potential features, which proves the effectiveness of the recommendation algorithm.
Keywords: recommendation algorithm; matrix decomposition; k-means; LFM


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫