• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:乔瑶瑶,张兰兰.基于深度学习的实时点云修补算法[J].软件工程,2023,26(6):36-39.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的实时点云修补算法
乔瑶瑶, 张兰兰
(黄河交通学院智能工程学院, 河南 焦作 454950)
1157764920@qq.com; 2089208988@qq.com
摘 要: 传统点云修补方法对于特征不明显的点云修补效果不佳,为此提出了一种基于深度学习的点云修补算法,算法框架包括自动编码器、对抗生成网络及强化学习模块。该算法首先在潜在空间表征上训练对抗生成网络,然后引入自动编码器网络,自动编码器网络中的编码器可以将输入点云压缩成潜在空间表征,最后引入强化学习模块,为对抗生成网络的生成器选择合适的向量合成完整点云的潜在空间表征。实验表明,该算法可以修补特征不明显的点云,并能在毫秒级别内较为有效地完成点云缺失区域修补。
关键词: 点云修补;深度学习;对抗生成网络
中图分类号: TP391    文献标识码: A
基金项目: 黄河交通学院智能汽车计算机视觉工程研究中心项目(22KYGJ01).
Real-Time Point Cloud Repair Algorithm Based on Deep Learning
QIAO Yaoyao, ZHANG Lanlan
(College of Intelligent Engineering, Huanghe Jiaotong University, Jiaozuo 454950, China)
1157764920@qq.com; 2089208988@qq.com
Abstract: Traditional point cloud repair methods have poor performance in repairing point clouds with unclear features. Therefore, this paper proposes a point cloud repair algorithm based on deep learning, which includes an automatic encoder, adversarial generation network, and reinforcement learning module. This algorithm first trains the Generative Adversarial Network (GAN) on potential spatial representations. Then, an automatic encoder network is introduced, the encoder of which can compress the input point cloud into potential spatial representations. Finally, a reinforcement learning module is introduced to select suitable vectors for the generator of the GAN to synthesize the potential spatial representations of the complete point cloud. Experiments have shown that the proposed algorithm can repair point clouds with unclear features and effectively repair missing areas of point clouds within milliseconds.
Keywords: point cloud repair; deep learning; GAN


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫