• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:史伟民,阮芳草,李志强,孙磊,青冬.基于深度学习的管廊仪器设备目标检测算法研究[J].软件工程,2025,28(8):48-53.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的管廊仪器设备目标检测算法研究
史伟民1,阮芳草1,李志强2,孙磊1,青冬2
(1.浙江理工大学机械工程学院,浙江 杭州 310018;
2.苏州特域机器人科技有限公司,江苏 苏州 215163)
swm@zstu.edu.cn; ruanfangcao@163.com; lzq_2002_0@163.com;; 202110601013@mails.zstu.edu.cn; qing1447228775@163.com
摘 要: 针对现有仪器设备检测算法在管廊复杂环境下检测精度低、模型复杂等问题,提出一种改进YOLOv8n的SLB-YOLOv8n仪器设备检测算法。首先,构建C2f-star模块并替换主干网络中的C2f,降低模型复杂度;其次,在SPPF模块添加LSKA注意力机制,增强低光环境识别能力,并将特征融合方式替换为BiFPN,提高识别精度;最后,将损失函数替换为 WIoUv3,加快模型收敛速度。使用管廊自建数据集进行训练,结果表明SLB-YOLOv8n相比YOLOv8n参数量减少了31.9%,而mAP 提升了0.9%。改进后的算法在轻量化的同时提高了识别精度。
关键词: 改进的YOLOv8n算法  StarNet  目标检测  注意力机制  轻量化
中图分类号: TP391    文献标识码: A
Research on Target Detection Algorithm for Utility Tunnel Equipment Based on Deep Learning
SHI Weimin1, RUAN Fangcao1, LI Zhiqiang2, SUN Lei1, QING Dong2
(1.School of Mechanical Engineering, Zhejiang SC-I TECH University, Hangzhou 3100182, China;
2.Suzhou TeYu Robot Technology Co., Ltd., Suzhou 215163, China)
swm@zstu.edu.cn; ruanfangcao@163.com; lzq_2002_0@163.com;; 202110601013@mails.zstu.edu.cn; qing1447228775@163.com
Abstract: To address issues such as low detection accuracy and high model complexity of existing equipment detection algorithms in complex utility tunnel environments, this study proposes an improved SLB-YOLOv8n algorithm for instrument and equipment detection. First, a C2f-star module is constructed to replace the C2f in the backbone network, reducing model complexity. Second, the LSKA attention mechanism is integrated into the SPPF module to enhance recognition capability in low-light conditions. The feature fusion method is replaced with BiFPN to improve detection accuracy. Finally, the loss function is substituted with WIoUv3 to accelerate model convergence. Trained on a self-built utility tunnel dataset, results show that SLB-YOLOv8n reduces parameters by 31.9% while increasing mAP by 0.9% compared to YOLOv8n. The enhanced algorithm achieves lightweight design while improving recognition precision.
Keywords: improved YOLOv8n algorithm  StarNet  target detection  attention mechanism  lightweight


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫