• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:吴限,倪静.基于集成学习的社交媒体谣言检测研究[J].软件工程,2025,28(8):54-57.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于集成学习的社交媒体谣言检测研究
吴限,倪静
(上海理工大学管理学院,上海 200093)
wydhcwyjs@163.com; nijing501@126.com
摘 要: 社交媒体的普及促进了信息传播,也不可避免地为谣言泛滥提供了传播途径。用户是谣言传播的关键一环,用户间的差异性使他们对信息真实性做出不同判断,但差异性带来的影响很少在检测环节被考虑。因此,考虑差异个体在信息判别上的表现不同,将其纳入识别指标。针对以往数据集陈旧、识别性能不佳的问题,采集近两年的真实数据,利用贝叶斯优化后的LightGBM算法进行识别。结果表明用户差异可以有效识别谣言,且贝叶斯改进的LightGBM算法比其他算法表现出了更好的性能。
关键词: 社交媒体  谣言检测  个体差异  LightGBM  贝叶斯优化
中图分类号: TP391    文献标识码: A
基金项目: 国家社会科学基金资助项目(22BGL240,19BJY099)
Research on Social Media Rumor Detection Based on Ensemble Learning
WU Xian,NI Jing
(Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)
wydhcwyjs@163.com; nijing501@126.com
Abstract: The popularity of social media has facilitated information dissemination, and inevitably provided a channel for the proliferation of rumors. Users serve as critical agents in rumor propagation, and their inherent differences lead to varied judgments regarding information authenticity. However, such differences are rarely incorporated into detection frameworks. This study addresses this gap by integrating the distinct performance of heterogeneous individuals in information discernment as recognition metrics. To overcome limitations of outdated datasets and suboptimal identification performance in prior research, we collected real-world data from the past two years. Utilizing the LightGBM algorithm optimized with Bayesian methods for detection, our results demonstrate that user differences effectively identify rumors. Furthermore, the Bayesian-optimized LightGBM outperforms other algorithms in detection performance.
Keywords: social media  rumor detection  individual differences  LightGBM  Bayesian optimization


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫