• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:诸杰,顾亦然.基于轨迹自监督学习的城市旅行推荐方法[J].软件工程,2025,28(8):73-78.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于轨迹自监督学习的城市旅行推荐方法
诸杰,顾亦然
(南京邮电大学自动化学院、人工智能学院,江苏 南京 210023)
1222056230@njupt.edu.cn; guyr@njupt.edu.cn
摘 要: 针对深度递归方法在轨迹数据稀缺时难以捕捉用户需求多样性和轨迹不确定性的问题,基于BiGRU提出了轨迹自监督学习的城市旅行推荐方法(SLTR)。该方法通过自监督学习优化POI表示和轨迹表示,捕捉POI语义关系,并增强查询与轨迹推理能力。在4个真实城市数据集上进行对比实验,F1和Pairs-F1指标与次优模型相比,平均改进分别为2.08%和2.07%。结果表明,本文方法提高了旅行兴趣点推荐的准确度。
关键词: 旅行推荐  自监督学习  POI表示  轨迹表示
中图分类号: TP391    文献标识码: A
Urban Travel Recommendation A Method Based on Trajectory Self-Supervised Learning
ZHU Jie, GU Yiran
(College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
1222056230@njupt.edu.cn; guyr@njupt.edu.cn
Abstract: Addressing the challenge of deep recurrent methods in capturing user demand diversity and trajectory uncertainty under sparse trajectory data, this paper proposes a Trajectory Self-supervised Learning-based Urban Travel Recommendation method (SLTR) built upon BiGRU. The approach optimizes POI representations and trajectory representations through self-supervised learning, models POI semantic relationships, and enhances query-trajectory reasoning capabilities. Comparative experiments on four real-world urban datasets demonstrate average improvements of 2.08% and 2.07% in F1 and Pairs-F1 metrics respectively over the second-best model. Results indicate that our method enhances the accuracy of travel point-of-interest recommendations.
Keywords: travel recommendation  sel-f supervised learning  POI representation  trajectory representation


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫