• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:徐子豪,朱晓宏,邹兰林.基于深度学习的道路裂缝识别模型研究[J].软件工程,2025,28(8):69-72.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的道路裂缝识别模型研究
徐子豪,朱晓宏,邹兰林
(武汉科技大学汽车与交通工程学院,湖北 武汉 430070)
2011301011@qq.com; zhuxiaohong@wust.edu.cn; zll999-9@163.com
摘 要: 针对目前道路裂缝检测精度低,难以识别细小裂缝的问题,提出了一种改进的YOLOv9c算法模型,显著提升了道路裂缝的检测效果。首先,在YOLOv9c模型的头部网络中引入了CBAM模块,这不仅提高了模型的特征提取能力,还增加了检测精度;然后,在骨干网络和头部网络中用SCDown模块替换原有的 ADown模块,在降低模型复杂度的同时,提升了检测效率。经过实验,改进的YOLOv9c模型与原模型相比,分别在精度、召回率与mAP上各自提高了2.3%、3.1%与2.7%,模型参数量降低了10%,实现了对道路细小裂缝的高精度和高效率检测。
关键词: 道路裂缝检测  YOLOv9c  深度学习  CBAM  卷积神经网络
中图分类号: TP391.4    文献标识码: A
Research on Road Crack Recognition Model Based on Deep Learning
XU Zihao, ZHU Xiaohong, ZOU Lanlin
(The School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430070, China)
2011301011@qq.com; zhuxiaohong@wust.edu.cn; zll999-9@163.com
Abstract: To address the current issues of low accuracy in road crack detection and difficulty in identifying fine cracks, this study proposes an improved YOLOv9c algorithm model, which significantly enhances detection performance. Firstly, the CBAM module is introduced into the head network of the YOLOv9c model, improving both feature extraction capability and detection accuracy. Secondly, the original ADown module is replaced with the SCDown module in both the backbone and head networks, reducing model complexity while increasing detection efficiency. Experimental results demonstrate that compared with the original model, the improved YOLOv9c model achieves increases of 2.3% , 3.1% , and 2.7% in precision, recall, and mAP respectively, while reducing model parameters by 10% . This enables high-precision and efficient detection of fine road cracks.
Keywords: road crack detection  YOLOv9c  deep learning  CBAM  convolutional neural network


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫