• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:李婉,王航飞,黄沙,常晨旸.基于融合注意力与高级特征学习的低照度图像增强[J].软件工程,2025,28(10):31-35.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于融合注意力与高级特征学习的低照度图像增强
李婉1,2,王航飞1,2,黄沙1,2,常晨旸1,2
(1.陕西科技大学人工智能联合实验室,陕西 西安 710021;
2.陕西科技大学电子信息与人工智能学院,陕西 西安 710021)
liwan@sust.edu.cn; 3467431562@qq.com; 11627200235@qq.com; 1950694830@qq.com
摘 要: 针对低照度图像增强中特征学习不足与噪声干扰问题,提出一种融合注意力与高级特征学习的增强网络。首先,设计融合注意力模块,通过多尺度通道感知与空间特征融合抑制噪声并增强关键区域;同时,引入自注意蒸馏机制,利用高层特征引导底层特征优化,实现注意力特征的高效传递;其次,结合深度监督与对比学习策略,通过多层级监督信号与特征区分性约束提升高级特征表示能力。实验表明,所提方法在LOL-v1和LOL-v2-real以及LOL-v2-synthetic数据集上的SSIM指标达到了0.904、0.922、0.929。均优于其他方法。
关键词: 低照度  注意力机制  高级特征  自注意蒸馏  深度监督  对比学习
中图分类号: TP391    文献标识码: A
基金项目: 国家自然科学基金项目(32360437);甘肃省高等学校创新基金项目(2021A-056)
Low-Light Image Enhancement Based on Fused Attention and High-Level Feature Learning
LI Wan1,2,WANG Hangfei1,2,HUANG Sha1,2, CHANG Chenyang1,2
(1.Shaanxi University of Science and Technology Joint Artificial Intelligence Laboratory, Xi’an 710021, China;
2.School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China)
liwan@sust.edu.cn; 3467431562@qq.com; 11627200235@qq.com; 1950694830@qq.com
Abstract: To address the challenges of insufficient feature learning and noise interference in low-light image enhancement, we propose an enhancement network that integrates attention mechanisms with high-level feature learning. First, a fused attention module is designed to suppress noise and highlight key regions through mult-i scale channel perception and spatial feature fusion. Simultaneously, a sel-f attention distillation mechanism is introduced, leveraging high-level features to guide the optimization of low-level features, thereby enabling efficient transfer of attentive features. Second, deep supervision and contrastive learning strategies are combined to enhance high-level feature representation through mult-i level supervisory signals and feature discriminability constraints. Experiments demonstrate that the proposed method achieves SSIM scores of 0.904, 0.922, and 0.929 on the LOL-v1, LOL-v2-real, and LOL-v2-synthetic datasets, respectively, consistently outperforming existing approaches.
Keywords: low-light enhancement  attention mechanism  high-level features  sel-f attention distillation  deep supervision  contrastive learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫