| 摘 要: 在移动群智感知领域,用户数据隐私安全正面临着来自多方面的攻击,为了有效加强隐私保护,提出了一种隐私交易保护方案。该方案通过集成多层次加密技术、匿名凭证系统以及用户激励机制,旨在有效保护用户隐私的同时,促进用户积极参与。实验显示,2核心手机认证及伪名生成平均耗时8s,4核心设备性能更佳,使用 TOR时延迟约10s。在100个活跃任务中,私有信息检索协议3.5s内完成,证实了方案的高效性和实用性,显著优于现有方法。 |
| 关键词: 移动群智感知 隐私保护 隐私交易 激励机制 数据安全 匿名凭证 |
|
中图分类号: TP309.2
文献标识码: A
|
| 基金项目: 国家自然科学基金项目(32360437);甘肃省高等学校创新基金项目(2021A-056) |
|
| Research on Privacy-Preserving Transaction Scheme for Mobile Crowd Sensing |
|
ZHOU Guilong, ZHANG Jie
|
(School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
1750295898@qq.com; zhangjie@njupt.edu.cn
|
| Abstract: In the domain of mobile crowd sensing, user data privacy faces multifaceted security threats. To enhance privacy protection effectively, this study proposes a privacy-preserving transaction scheme. By integrating mult-i layer encryption techniques, an anonymous credential system, and user incentive mechanisms, the scheme aims to safeguard user privacy while promoting active participation. Experimental results demonstrate that dua-l core phone authentication and pseudonym generation require an average of 8 seconds, with quad-core devices delivering superior performance. When using TOR, the latency is approximately 10 seconds. In scenarios with 100 active tasks, the Private Information Retrieval protocol completes within 3.5 seconds, confirming the scheme’s efficiency and practicality while significantly outperforming existing methods. |
| Keywords: mobile crowd sensing privacy protection privacy transaction incentive mechanism data security anonymous credentials |